Add Vivado project files and testbench configurations for volume multiplier and volume saturator
- Created `tb_volume_multiplier_behav.wcfg` for waveform configuration of the volume multiplier testbench. - Added `volume_multiplier.xpr` project file for the volume multiplier design. - Created `volume_saturator.xpr` project file for the volume saturator design. - Added `volume_saturator_tb_behav.wcfg` for waveform configuration of the volume saturator testbench.
This commit is contained in:
157
LAB3/sim/tb_volume_saturator.vhd
Normal file
157
LAB3/sim/tb_volume_saturator.vhd
Normal file
@@ -0,0 +1,157 @@
|
||||
----------------------------------------------------------------------------------
|
||||
-- Company:
|
||||
-- Engineer:
|
||||
--
|
||||
-- Create Date: 05/20/2025
|
||||
-- Design Name:
|
||||
-- Module Name: tb_volume_saturator - Behavioral
|
||||
-- Project Name:
|
||||
-- Target Devices:
|
||||
-- Tool Versions: Vivado 2020.2
|
||||
-- Description: Testbench for volume_saturator (stereo, L->R, tlast on R)
|
||||
--
|
||||
----------------------------------------------------------------------------------
|
||||
LIBRARY IEEE;
|
||||
USE IEEE.STD_LOGIC_1164.ALL;
|
||||
USE IEEE.NUMERIC_STD.ALL;
|
||||
|
||||
ENTITY tb_volume_saturator IS
|
||||
END tb_volume_saturator;
|
||||
|
||||
ARCHITECTURE Behavioral OF tb_volume_saturator IS
|
||||
|
||||
CONSTANT TDATA_WIDTH : POSITIVE := 24;
|
||||
CONSTANT VOLUME_WIDTH : POSITIVE := 10;
|
||||
CONSTANT VOLUME_STEP_2 : POSITIVE := 6;
|
||||
CONSTANT STEREO_SAMPLES : INTEGER := 8;
|
||||
|
||||
-- Calculate s_axis_tdata width
|
||||
CONSTANT TDATA_IN_WIDTH : INTEGER := TDATA_WIDTH - 1 + 2 ** (VOLUME_WIDTH - VOLUME_STEP_2 - 1) + 1;
|
||||
|
||||
COMPONENT volume_saturator IS
|
||||
GENERIC (
|
||||
TDATA_WIDTH : POSITIVE := 24;
|
||||
VOLUME_WIDTH : POSITIVE := 10;
|
||||
VOLUME_STEP_2 : POSITIVE := 6; -- i.e., number_of_steps = 2**(VOLUME_STEP_2)
|
||||
HIGHER_BOUND : INTEGER := 2 ** 15 - 1; -- Inclusive
|
||||
LOWER_BOUND : INTEGER := - 2 ** 15 -- Inclusive
|
||||
);
|
||||
PORT (
|
||||
aclk : IN STD_LOGIC;
|
||||
aresetn : IN STD_LOGIC;
|
||||
|
||||
s_axis_tvalid : IN STD_LOGIC;
|
||||
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 + 2 ** (VOLUME_WIDTH - VOLUME_STEP_2 - 1) DOWNTO 0);
|
||||
s_axis_tlast : IN STD_LOGIC;
|
||||
s_axis_tready : OUT STD_LOGIC;
|
||||
|
||||
m_axis_tvalid : OUT STD_LOGIC;
|
||||
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
|
||||
m_axis_tlast : OUT STD_LOGIC;
|
||||
m_axis_tready : IN STD_LOGIC
|
||||
);
|
||||
END COMPONENT;
|
||||
|
||||
SIGNAL aclk : STD_LOGIC := '0';
|
||||
SIGNAL aresetn : STD_LOGIC := '0';
|
||||
SIGNAL s_axis_tvalid : STD_LOGIC := '0';
|
||||
SIGNAL s_axis_tdata : STD_LOGIC_VECTOR(TDATA_WIDTH - 1 + 2 ** (VOLUME_WIDTH - VOLUME_STEP_2 - 1) DOWNTO 0) := (OTHERS => '0');
|
||||
SIGNAL s_axis_tlast : STD_LOGIC := '0';
|
||||
SIGNAL s_axis_tready : STD_LOGIC;
|
||||
SIGNAL m_axis_tvalid : STD_LOGIC;
|
||||
SIGNAL m_axis_tdata : STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
|
||||
SIGNAL m_axis_tlast : STD_LOGIC;
|
||||
SIGNAL m_axis_tready : STD_LOGIC := '1';
|
||||
|
||||
-- Example stereo audio: L, R, L, R, ... (tlast on R)
|
||||
TYPE stereo_mem_type IS ARRAY(0 TO 2 * STEREO_SAMPLES - 1) OF STD_LOGIC_VECTOR(TDATA_IN_WIDTH - 1 DOWNTO 0);
|
||||
SIGNAL stereo_mem : stereo_mem_type := (
|
||||
x"00009C40", -- +40000 (clipping positivo)
|
||||
x"00007FFF", -- +32767 (HIGHER_BOUND)
|
||||
x"00007FFE", -- +32766 (appena sotto HIGHER_BOUND)
|
||||
x"00000000", -- 0
|
||||
x"FFFF8001", -- -32767 (appena sopra LOWER_BOUND)
|
||||
x"FFFF8000", -- -32768 (LOWER_BOUND)
|
||||
x"FFFF63C0", -- -40000 (clipping negativo)
|
||||
x"00003039", -- +12345 (valore positivo intermedio)
|
||||
x"FFFFCFC7", -- -12345 (valore negativo intermedio)
|
||||
x"00007FFF", -- +32767 (HIGHER_BOUND, ripetuto)
|
||||
x"FFFF8000", -- -32768 (LOWER_BOUND, ripetuto)
|
||||
x"00009C40", -- +40000 (clipping positivo, ripetuto)
|
||||
x"FFFF63C0", -- -40000 (clipping negativo, ripetuto)
|
||||
x"00000001", -- +1
|
||||
x"FFFFFFFF", -- -1
|
||||
x"00000000" -- 0 (ripetuto)
|
||||
);
|
||||
|
||||
BEGIN
|
||||
|
||||
-- Clock generation
|
||||
aclk <= NOT aclk AFTER 5 ns;
|
||||
|
||||
-- DUT instantiation
|
||||
uut : volume_saturator
|
||||
GENERIC MAP(
|
||||
TDATA_WIDTH => TDATA_WIDTH,
|
||||
VOLUME_WIDTH => VOLUME_WIDTH,
|
||||
VOLUME_STEP_2 => VOLUME_STEP_2,
|
||||
HIGHER_BOUND => 2 ** 15 - 1,
|
||||
LOWER_BOUND => - 2 ** 15
|
||||
)
|
||||
PORT MAP(
|
||||
aclk => aclk,
|
||||
aresetn => aresetn,
|
||||
s_axis_tvalid => s_axis_tvalid,
|
||||
s_axis_tdata => s_axis_tdata,
|
||||
s_axis_tlast => s_axis_tlast,
|
||||
s_axis_tready => s_axis_tready,
|
||||
m_axis_tvalid => m_axis_tvalid,
|
||||
m_axis_tdata => m_axis_tdata,
|
||||
m_axis_tlast => m_axis_tlast,
|
||||
m_axis_tready => m_axis_tready
|
||||
);
|
||||
|
||||
-- Stimulus process: send stereo samples, tlast on R
|
||||
stimulus : PROCESS
|
||||
BEGIN
|
||||
-- Reset
|
||||
WAIT FOR 10 ns;
|
||||
aresetn <= '1';
|
||||
WAIT UNTIL rising_edge(aclk);
|
||||
|
||||
FOR i IN 0 TO stereo_mem'high LOOP
|
||||
s_axis_tdata <= stereo_mem(i);
|
||||
s_axis_tvalid <= '1';
|
||||
-- tlast asserted on every R channel (odd index)
|
||||
IF (i MOD 2) = 1 THEN
|
||||
s_axis_tlast <= '1';
|
||||
ELSE
|
||||
s_axis_tlast <= '0';
|
||||
END IF;
|
||||
-- Wait for handshake
|
||||
WAIT UNTIL rising_edge(aclk);
|
||||
WHILE s_axis_tready = '0' LOOP
|
||||
WAIT UNTIL rising_edge(aclk);
|
||||
END LOOP;
|
||||
END LOOP;
|
||||
s_axis_tvalid <= '0';
|
||||
s_axis_tlast <= '0';
|
||||
|
||||
-- Wait and finish
|
||||
WAIT FOR 100 ns;
|
||||
WAIT;
|
||||
END PROCESS;
|
||||
|
||||
-- Optionally, block m_axis_tready for a few cycles to test backpressure
|
||||
PROCESS
|
||||
BEGIN
|
||||
WAIT FOR 80 ns;
|
||||
WAIT UNTIL rising_edge(aclk);
|
||||
m_axis_tready <= '0';
|
||||
WAIT FOR 30 ns;
|
||||
WAIT UNTIL rising_edge(aclk);
|
||||
m_axis_tready <= '1';
|
||||
WAIT;
|
||||
END PROCESS;
|
||||
|
||||
END Behavioral;
|
||||
Reference in New Issue
Block a user