Enhance bram_writer: add image size parameter, improve state machine for data handling, and refine signal management for better performance

This commit is contained in:
2025-04-17 19:21:15 +02:00
parent 1d226709ac
commit 7ee12b37fe
2 changed files with 262 additions and 76 deletions

View File

@@ -1,116 +1,161 @@
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;
entity bram_writer is
generic(
ADDR_WIDTH: POSITIVE :=16
ENTITY bram_writer IS
GENERIC (
ADDR_WIDTH : POSITIVE := 16;
IMG_SIZE : POSITIVE := 256 -- Image size (256x256)
);
port (
clk : in std_logic;
aresetn : in std_logic;
PORT (
clk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
s_axis_tdata : in std_logic_vector(7 downto 0);
s_axis_tvalid : in std_logic;
s_axis_tready : out std_logic;
s_axis_tlast : in std_logic;
s_axis_tdata : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axis_tvalid : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
s_axis_tlast : IN STD_LOGIC;
conv_addr: in std_logic_vector(ADDR_WIDTH-1 downto 0);
conv_data: out std_logic_vector(6 downto 0);
conv_addr : IN STD_LOGIC_VECTOR(ADDR_WIDTH - 1 DOWNTO 0);
conv_data : OUT STD_LOGIC_VECTOR(6 DOWNTO 0);
start_conv: out std_logic;
done_conv: in std_logic;
start_conv : OUT STD_LOGIC;
done_conv : IN STD_LOGIC;
write_ok : out std_logic;
overflow : out std_logic;
underflow: out std_logic
write_ok : OUT STD_LOGIC;
overflow : OUT STD_LOGIC;
underflow : OUT STD_LOGIC
);
end entity bram_writer;
END ENTITY bram_writer;
architecture rtl of bram_writer is
ARCHITECTURE rtl OF bram_writer IS
component bram_controller is
generic (
ADDR_WIDTH: POSITIVE :=16
COMPONENT bram_controller IS
GENERIC (
ADDR_WIDTH : POSITIVE := 16
);
port (
clk : in std_logic;
aresetn : in std_logic;
addr: in std_logic_vector(ADDR_WIDTH-1 downto 0);
dout: out std_logic_vector(7 downto 0);
din: in std_logic_vector(7 downto 0);
we: in std_logic
);
end component;
PORT (
clk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
TYPE state_type is (IDLE, RECEIVING, CONVOLUTION);
addr : IN STD_LOGIC_VECTOR(ADDR_WIDTH - 1 DOWNTO 0);
dout : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
din : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
we : IN STD_LOGIC
);
END COMPONENT;
TYPE state_type IS (IDLE, RECEIVING, CONVOLUTION);
SIGNAL state : state_type := IDLE;
SIGNAL s_axis_tready_int : std_logic := '0';
SIGNAL s_axis_tready_int : STD_LOGIC := '0';
SIGNAL bram_addr : std_logic_vector(ADDR_WIDTH-1 downto 0) := (others => '0'); -- Indirizzo BRAM
SIGNAL bram_we : std_logic := '0'; -- Segnale di scrittura per il BRAM
SIGNAL bram_addr : STD_LOGIC_VECTOR(ADDR_WIDTH - 1 DOWNTO 0) := (OTHERS => '0'); -- BRAM address
SIGNAL bram_we : STD_LOGIC := '0'; -- Write enable signal for BRAM
SIGNAL wr_addr : std_logic_vector(ADDR_WIDTH-1 downto 0) := (others => '0'); -- Indirizzo di scrittura BRAM
SIGNAL wr_addr : STD_LOGIC_VECTOR(ADDR_WIDTH - 1 DOWNTO 0) := (OTHERS => '0'); -- Write address for BRAM
begin
BRAM_CTRL: bram_controller
generic map (
ADDR_WIDTH => ADDR_WIDTH
)
port map (
clk => clk,
aresetn => aresetn,
addr => bram_addr,
dout => conv_data,
din => s_axis_tdata,
we => bram_we
);
BEGIN
-- AXIS
s_axis_tready <= s_axis_tready_int
-- Instantiate BRAM controller
BRAM_CTRL : bram_controller
GENERIC MAP(
ADDR_WIDTH => ADDR_WIDTH
)
PORT MAP(
clk => clk,
aresetn => aresetn,
addr => bram_addr,
dout => conv_data,
din => s_axis_tdata,
we => bram_we
);
-- Gestione addr BRAM
with state select bram_addr <= conv_addr when CONVOLUTION,
wr_addr when Others;
-- Assign AXIS ready signal
s_axis_tready <= s_axis_tready_int;
process(clk)
begin
if rising_edge(clk) then
if aresetn = '0' then
-- Select BRAM address based on state
WITH state SELECT bram_addr <= conv_addr WHEN CONVOLUTION,
wr_addr WHEN OTHERS;
PROCESS (clk)
BEGIN
IF rising_edge(clk) THEN
IF aresetn = '0' THEN
-- Reset all signals and state
state <= IDLE;
s_axis_tready_int <= '0';
bram_we <= '0';
wr_addr <= (others => '0');
wr_addr <= (OTHERS => '0');
start_conv <= '0';
write_ok <= '0';
overflow <= '0';
underflow <= '0';
else
ELSE
-- Default assignments for each clock cycle
start_conv <= '0';
bram_we <= '0';
write_ok <= '0';
overflow <= '0';
underflow <= '0';
s_axis_tready_int <= '1';
case state is
when IDLE =>
s_axis_tready_int <= '1';
-- State machine for data handling
CASE state IS
WHEN IDLE =>
-- Wait for valid input data
IF s_axis_tvalid = '1' AND s_axis_tready_int = '1' THEN
-- valid data received, start receiving
wr_addr <= (OTHERS => '0');
bram_we <= '1'; -- Enable write to BRAM
state <= RECEIVING;
END IF;
WHEN RECEIVING =>
-- Receiving data, increment write address
IF s_axis_tvalid = '1' AND s_axis_tready_int = '1' THEN
-- Check for overflow: if address reaches max image size
IF unsigned(wr_addr) = (IMG_SIZE ** 2 - 1) THEN
overflow <= '1';
state <= IDLE;
ELSE
-- Increment write address and write data to BRAM
wr_addr <= STD_LOGIC_VECTOR(unsigned(wr_addr) + 1);
bram_we <= '1'; -- Enable write to BRAM
when RECEIVING =>
-- Check for last data signal
IF s_axis_tlast = '1' THEN
-- Check for underflow: if not enough data received
IF unsigned(wr_addr) < (IMG_SIZE ** 2 - 2) THEN
underflow <= '1';
state <= IDLE;
ELSE
-- Data reception complete, start convolution
write_ok <= '1';
s_axis_tready_int <= '0';
start_conv <= '1';
state <= CONVOLUTION;
END IF;
END IF;
END IF;
END IF;
when CONVOLUTION =>
WHEN CONVOLUTION =>
-- Wait for convolution to finish
s_axis_tready_int <= '0';
end case;
end if;
end if;
end process;
IF done_conv = '1' THEN
state <= IDLE;
END IF;
end architecture;
END CASE;
END IF;
END IF;
END PROCESS;
END ARCHITECTURE;