Add comments

This commit is contained in:
2025-05-27 17:42:40 +02:00
parent d1cfa6443b
commit 82d76e48d8
15 changed files with 1626 additions and 1047 deletions

View File

@@ -2,180 +2,255 @@ LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.NUMERIC_STD.ALL;
-- Entity: LFO (Low Frequency Oscillator)
-- Purpose: Applies tremolo effect to audio by modulating amplitude with a triangular wave
-- Creates classic audio effects like vibrato, tremolo, and amplitude modulation
-- Implements a 3-stage pipeline for efficient real-time audio processing
ENTITY LFO IS
GENERIC (
CHANNEL_LENGHT : INTEGER := 24;
JOYSTICK_LENGHT : INTEGER := 10;
CLK_PERIOD_NS : INTEGER := 10;
TRIANGULAR_COUNTER_LENGHT : INTEGER := 10
CHANNEL_LENGHT : INTEGER := 24; -- Bit width of audio samples (24-bit signed)
JOYSTICK_LENGHT : INTEGER := 10; -- Bit width of joystick input (10-bit = 0-1023 range)
CLK_PERIOD_NS : INTEGER := 10; -- Clock period in nanoseconds (10ns = 100MHz)
TRIANGULAR_COUNTER_LENGHT : INTEGER := 10 -- Bit width of triangular wave counter (affects modulation depth)
);
PORT (
aclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
lfo_period : IN STD_LOGIC_VECTOR(JOYSTICK_LENGHT - 1 DOWNTO 0);
lfo_enable : IN STD_LOGIC;
-- Slave AXI Stream interface
s_axis_tvalid : IN STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(CHANNEL_LENGHT - 1 DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
-- Master AXI Stream interface
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(CHANNEL_LENGHT - 1 DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC
-- Clock and Reset
aclk : IN STD_LOGIC; -- Main system clock
aresetn : IN STD_LOGIC; -- Active-low asynchronous reset
-- LFO Control inputs
lfo_period : IN STD_LOGIC_VECTOR(JOYSTICK_LENGHT - 1 DOWNTO 0); -- Controls LFO frequency (joystick Y-axis)
lfo_enable : IN STD_LOGIC; -- Enable/bypass LFO effect
-- Slave AXI Stream interface (audio input)
s_axis_tvalid : IN STD_LOGIC; -- Input data valid signal
s_axis_tdata : IN STD_LOGIC_VECTOR(CHANNEL_LENGHT - 1 DOWNTO 0); -- Audio sample input
s_axis_tlast : IN STD_LOGIC; -- Channel indicator (0=left, 1=right)
s_axis_tready : OUT STD_LOGIC; -- Ready to accept input data
-- Master AXI Stream interface (audio output)
m_axis_tvalid : OUT STD_LOGIC; -- Output data valid signal
m_axis_tdata : OUT STD_LOGIC_VECTOR(CHANNEL_LENGHT - 1 DOWNTO 0); -- Modulated audio sample output
m_axis_tlast : OUT STD_LOGIC; -- Channel indicator passthrough
m_axis_tready : IN STD_LOGIC -- Downstream ready signal
);
END ENTITY LFO;
ARCHITECTURE Behavioral OF LFO IS
CONSTANT LFO_COUNTER_BASE_PERIOD_US : INTEGER := 1000; -- 1ms
CONSTANT ADJUSTMENT_FACTOR : INTEGER := 90;
CONSTANT JSTK_CENTER_VALUE : INTEGER := 2 ** (JOYSTICK_LENGHT - 1); -- 512 for 10 bits
CONSTANT LFO_COUNTER_BASE_CLK_CYCLES : INTEGER := LFO_COUNTER_BASE_PERIOD_US * 1000 / CLK_PERIOD_NS; -- 1ms = 100_000 clk cycles
CONSTANT LFO_CLK_CYCLES_MIN : INTEGER := LFO_COUNTER_BASE_CLK_CYCLES - ADJUSTMENT_FACTOR * (2 ** (JOYSTICK_LENGHT - 1)); -- 53_920 clk cycles
CONSTANT LFO_CLK_CYCLES_MAX : INTEGER := LFO_COUNTER_BASE_CLK_CYCLES + ADJUSTMENT_FACTOR * (2 ** (JOYSTICK_LENGHT - 1) - 1); -- 145_990 clk cycles
-- Constants for LFO timing configuration
CONSTANT BASE_PERIOD_MICROSECONDS : INTEGER := 1000; -- Base period: 1ms (1kHz base frequency)
CONSTANT FREQUENCY_ADJUSTMENT_FACTOR : INTEGER := 90; -- Frequency adjustment sensitivity (clock cycles per joystick unit)
CONSTANT JOYSTICK_CENTER_VALUE : INTEGER := 2 ** (JOYSTICK_LENGHT - 1); -- Joystick center position (512 for 10-bit)
-- Signals for LFO operation
SIGNAL step_clk_cycles_delta : INTEGER RANGE - 2 ** (JOYSTICK_LENGHT - 1) * ADJUSTMENT_FACTOR TO (2 ** (JOYSTICK_LENGHT - 1) - 1) * ADJUSTMENT_FACTOR := 0;
SIGNAL step_clk_cycles : INTEGER RANGE LFO_CLK_CYCLES_MIN TO LFO_CLK_CYCLES_MAX := LFO_COUNTER_BASE_CLK_CYCLES;
-- Calculate base clock cycles for 1ms period at current clock frequency
CONSTANT BASE_CLOCK_CYCLES : INTEGER := BASE_PERIOD_MICROSECONDS * 1000 / CLK_PERIOD_NS;
-- Pipeline stage registers
SIGNAL s_axis_tdata_r1 : STD_LOGIC_VECTOR(CHANNEL_LENGHT - 1 DOWNTO 0) := (OTHERS => '0');
SIGNAL lfo_enable_r1 : STD_LOGIC := '0';
SIGNAL s_axis_tvalid_r1 : STD_LOGIC := '0';
SIGNAL s_axis_tlast_r1 : STD_LOGIC := '0';
-- Calculate frequency range limits based on joystick range
-- Minimum frequency (fastest LFO): occurs when joystick is at minimum position
CONSTANT MIN_CLOCK_CYCLES : INTEGER := BASE_CLOCK_CYCLES - FREQUENCY_ADJUSTMENT_FACTOR * (2 ** (JOYSTICK_LENGHT - 1));
-- Maximum frequency (slowest LFO): occurs when joystick is at maximum position
CONSTANT MAX_CLOCK_CYCLES : INTEGER := BASE_CLOCK_CYCLES + FREQUENCY_ADJUSTMENT_FACTOR * (2 ** (JOYSTICK_LENGHT - 1) - 1);
SIGNAL tri_counter_r2 : unsigned(TRIANGULAR_COUNTER_LENGHT - 1 DOWNTO 0) := (OTHERS => '0');
SIGNAL direction_up_r2 : STD_LOGIC := '1';
SIGNAL step_counter_r2 : NATURAL RANGE 0 TO LFO_CLK_CYCLES_MAX := 0;
SIGNAL lfo_enable_r2 : STD_LOGIC := '0';
SIGNAL s_axis_tvalid_r2 : STD_LOGIC := '0';
SIGNAL s_axis_tlast_r2 : STD_LOGIC := '0';
SIGNAL s_axis_tdata_r2 : STD_LOGIC_VECTOR(CHANNEL_LENGHT - 1 DOWNTO 0) := (OTHERS => '0');
-- Internal signals for LFO control
-- Period adjustment based on joystick input (positive = slower, negative = faster)
SIGNAL period_adjustment_delta : INTEGER RANGE - 2 ** (JOYSTICK_LENGHT - 1) * FREQUENCY_ADJUSTMENT_FACTOR
TO (2 ** (JOYSTICK_LENGHT - 1) - 1) * FREQUENCY_ADJUSTMENT_FACTOR := 0;
SIGNAL current_period_cycles : INTEGER RANGE MIN_CLOCK_CYCLES TO MAX_CLOCK_CYCLES := BASE_CLOCK_CYCLES;
SIGNAL temp_r3 : STD_LOGIC_VECTOR(CHANNEL_LENGHT + TRIANGULAR_COUNTER_LENGHT - 1 DOWNTO 0) := (OTHERS => '0');
SIGNAL m_axis_tvalid_i : STD_LOGIC := '0';
SIGNAL s_axis_tready_i : STD_LOGIC := '1';
-- Pipeline stage 1 registers - Input processing and period calculation
SIGNAL audio_data_stage1 : STD_LOGIC_VECTOR(CHANNEL_LENGHT - 1 DOWNTO 0) := (OTHERS => '0'); -- Registered audio input
SIGNAL enable_flag_stage1 : STD_LOGIC := '0'; -- Registered LFO enable
SIGNAL valid_flag_stage1 : STD_LOGIC := '0'; -- Valid data in stage 1
SIGNAL last_flag_stage1 : STD_LOGIC := '0'; -- Registered channel indicator
-- Pipeline stage 2 registers - Triangular wave generation
SIGNAL triangular_wave_value : unsigned(TRIANGULAR_COUNTER_LENGHT - 1 DOWNTO 0) := (OTHERS => '0'); -- Current triangular wave amplitude
SIGNAL wave_direction_up : STD_LOGIC := '1'; -- Triangle wave direction: '1' = ascending, '0' = descending
SIGNAL timing_counter : NATURAL RANGE 0 TO MAX_CLOCK_CYCLES := 0; -- Clock cycle counter for LFO timing
SIGNAL enable_flag_stage2 : STD_LOGIC := '0'; -- LFO enable flag for stage 2
SIGNAL valid_flag_stage2 : STD_LOGIC := '0'; -- Valid data in stage 2
SIGNAL last_flag_stage2 : STD_LOGIC := '0'; -- Channel indicator for stage 2
SIGNAL audio_data_stage2 : STD_LOGIC_VECTOR(CHANNEL_LENGHT - 1 DOWNTO 0) := (OTHERS => '0'); -- Audio data for stage 2
-- Pipeline stage 3 registers - Modulation and output
-- Extended width to accommodate multiplication result before scaling
SIGNAL multiplication_result : STD_LOGIC_VECTOR(CHANNEL_LENGHT + TRIANGULAR_COUNTER_LENGHT - 1 DOWNTO 0) := (OTHERS => '0');
-- Internal AXI4-Stream control signals
SIGNAL master_valid_internal : STD_LOGIC := '0'; -- Internal output valid signal
SIGNAL slave_ready_internal : STD_LOGIC := '1'; -- Internal input ready signal
BEGIN
m_axis_tlast <= s_axis_tlast_r1;
-- Direct connection: tlast passes through unchanged (maintains channel timing)
m_axis_tlast <= last_flag_stage1;
-- Stage 1: Input registration and LFO period calculation
PROCESS (aclk)
-- Pipeline stage 1: Input registration and LFO period calculation
-- This stage captures input data and calculates the LFO period based on joystick position
input_processing_stage : PROCESS (aclk)
BEGIN
IF rising_edge(aclk) THEN
IF aresetn = '0' THEN
s_axis_tdata_r1 <= (OTHERS => '0');
step_clk_cycles <= LFO_COUNTER_BASE_CLK_CYCLES;
lfo_enable_r1 <= '0';
s_axis_tvalid_r1 <= '0';
s_axis_tlast_r1 <= '0';
-- Reset all stage 1 registers to safe initial states
audio_data_stage1 <= (OTHERS => '0'); -- Clear audio data
current_period_cycles <= BASE_CLOCK_CYCLES; -- Set to base frequency
enable_flag_stage1 <= '0'; -- Disable LFO
valid_flag_stage1 <= '0'; -- No valid data
last_flag_stage1 <= '0'; -- Clear channel indicator
ELSE
-- Set the step_clk_cycles based on the joystick input
step_clk_cycles_delta <= (to_integer(unsigned(lfo_period)) - JSTK_CENTER_VALUE) * ADJUSTMENT_FACTOR;
step_clk_cycles <= LFO_COUNTER_BASE_CLK_CYCLES - step_clk_cycles_delta;
-- Calculate LFO period based on joystick input
-- Joystick mapping:
-- 0-511: Faster than base frequency (shorter period)
-- 512: Base frequency (1kHz)
-- 513-1023: Slower than base frequency (longer period)
period_adjustment_delta <= (to_integer(unsigned(lfo_period)) - JOYSTICK_CENTER_VALUE) * FREQUENCY_ADJUSTMENT_FACTOR;
current_period_cycles <= BASE_CLOCK_CYCLES - period_adjustment_delta;
IF s_axis_tvalid = '1' AND s_axis_tready_i = '1' THEN
s_axis_tdata_r1 <= s_axis_tdata;
lfo_enable_r1 <= lfo_enable;
s_axis_tvalid_r1 <= '1';
s_axis_tlast_r1 <= s_axis_tlast;
-- AXI4-Stream handshake: accept new data when both valid and ready
IF s_axis_tvalid = '1' AND slave_ready_internal = '1' THEN
audio_data_stage1 <= s_axis_tdata; -- Register input audio sample
enable_flag_stage1 <= lfo_enable; -- Register enable control
valid_flag_stage1 <= '1'; -- Mark data as valid for next stage
last_flag_stage1 <= s_axis_tlast; -- Register channel boundary signal
ELSE
s_axis_tvalid_r1 <= '0';
valid_flag_stage1 <= '0'; -- No valid data to pass to next stage
END IF;
END IF;
END IF;
END PROCESS;
END PROCESS input_processing_stage;
-- Stage 2: Triangular counter control
PROCESS (aclk)
-- Pipeline stage 2: Triangular wave generation
-- This stage generates the triangular wave that will modulate the audio amplitude
triangular_wave_generator : PROCESS (aclk)
BEGIN
IF rising_edge(aclk) THEN
IF aresetn = '0' THEN
step_counter_r2 <= 0;
tri_counter_r2 <= (OTHERS => '0');
direction_up_r2 <= '1';
lfo_enable_r2 <= '0';
s_axis_tvalid_r2 <= '0';
s_axis_tlast_r2 <= '0';
s_axis_tdata_r2 <= (OTHERS => '0');
-- Reset triangular wave generator to initial state
timing_counter <= 0; -- Clear timing counter
triangular_wave_value <= (OTHERS => '0'); -- Start at zero amplitude
wave_direction_up <= '1'; -- Start counting up
enable_flag_stage2 <= '0'; -- Disable LFO
valid_flag_stage2 <= '0'; -- No valid data
last_flag_stage2 <= '0'; -- Clear channel indicator
audio_data_stage2 <= (OTHERS => '0'); -- Clear audio data
ELSE
lfo_enable_r2 <= lfo_enable_r1;
s_axis_tvalid_r2 <= s_axis_tvalid_r1;
s_axis_tlast_r2 <= s_axis_tlast_r1;
s_axis_tdata_r2 <= s_axis_tdata_r1;
-- Pass through pipeline registers from stage 1 to stage 2
enable_flag_stage2 <= enable_flag_stage1; -- Forward enable flag
valid_flag_stage2 <= valid_flag_stage1; -- Forward valid flag
last_flag_stage2 <= last_flag_stage1; -- Forward channel indicator
audio_data_stage2 <= audio_data_stage1; -- Forward audio data
IF lfo_enable_r1 = '1' THEN
IF step_counter_r2 < step_clk_cycles THEN
step_counter_r2 <= step_counter_r2 + 1;
-- Generate triangular wave when LFO is enabled
IF enable_flag_stage1 = '1' THEN
-- Clock divider: update triangular counter based on calculated period
IF timing_counter < current_period_cycles THEN
timing_counter <= timing_counter + 1; -- Count towards period target
ELSE
step_counter_r2 <= 0;
IF direction_up_r2 = '1' THEN
IF tri_counter_r2 = (2 ** TRIANGULAR_COUNTER_LENGHT) - 1 THEN
direction_up_r2 <= '0';
tri_counter_r2 <= tri_counter_r2 - 1;
timing_counter <= 0; -- Reset counter for next period
-- Update triangular wave: count up or down based on current direction
-- This creates the classic triangular waveform shape
IF wave_direction_up = '1' THEN
-- Ascending phase: check if we reached maximum amplitude
IF triangular_wave_value = (2 ** TRIANGULAR_COUNTER_LENGHT) - 1 THEN
wave_direction_up <= '0'; -- Switch to descending phase
triangular_wave_value <= triangular_wave_value - 1; -- Start decreasing
ELSE
tri_counter_r2 <= tri_counter_r2 + 1;
triangular_wave_value <= triangular_wave_value + 1; -- Continue increasing
END IF;
ELSE
IF tri_counter_r2 = 0 THEN
direction_up_r2 <= '1';
tri_counter_r2 <= tri_counter_r2 + 1;
-- Descending phase: check if we reached minimum amplitude
IF triangular_wave_value = 0 THEN
wave_direction_up <= '1'; -- Switch to ascending phase
triangular_wave_value <= triangular_wave_value + 1; -- Start increasing
ELSE
tri_counter_r2 <= tri_counter_r2 - 1;
triangular_wave_value <= triangular_wave_value - 1; -- Continue decreasing
END IF;
END IF;
END IF;
ELSE
step_counter_r2 <= 0;
tri_counter_r2 <= (OTHERS => '0');
direction_up_r2 <= '1';
-- LFO disabled: reset triangular wave generator to idle state
timing_counter <= 0; -- Clear timing counter
triangular_wave_value <= (OTHERS => '0'); -- Reset to zero amplitude
wave_direction_up <= '1'; -- Reset to ascending direction
END IF;
END IF;
END IF;
END PROCESS;
END PROCESS triangular_wave_generator;
-- Stage 3: Optimized modulation and output handling
PROCESS (aclk)
-- Pipeline stage 3: Audio modulation and output control
-- This stage applies the LFO effect by multiplying audio samples with the triangular wave
modulation_and_output : PROCESS (aclk)
BEGIN
IF rising_edge(aclk) THEN
IF aresetn = '0' THEN
m_axis_tdata <= (OTHERS => '0');
m_axis_tvalid_i <= '0';
s_axis_tready_i <= '1';
-- Reset output stage to safe initial state
m_axis_tdata <= (OTHERS => '0'); -- Clear output data
master_valid_internal <= '0'; -- No valid output
slave_ready_internal <= '1'; -- Ready to accept input
ELSE
IF m_axis_tvalid_i = '1' AND m_axis_tready = '0' THEN
m_axis_tvalid_i <= '1';
ELSIF s_axis_tvalid_r2 = '1' THEN
IF lfo_enable_r2 = '1' THEN
temp_r3 <= STD_LOGIC_VECTOR(
-- Output flow control: handle backpressure from downstream modules
IF master_valid_internal = '1' AND m_axis_tready = '0' THEN
-- Downstream not ready: maintain current output valid state
-- This implements proper AXI4-Stream backpressure handling
master_valid_internal <= '1';
ELSIF valid_flag_stage2 = '1' THEN
-- New data available from stage 2: apply LFO effect or bypass
IF enable_flag_stage2 = '1' THEN
-- Apply LFO tremolo effect: multiply audio sample by triangular wave
-- This creates amplitude modulation (tremolo effect)
multiplication_result <= STD_LOGIC_VECTOR(
resize(
signed(s_axis_tdata_r2) * signed('0' & tri_counter_r2),
temp_r3'length
signed(audio_data_stage2) * signed('0' & triangular_wave_value),
multiplication_result'length
)
);
m_axis_tdata <= temp_r3(temp_r3'high DOWNTO TRIANGULAR_COUNTER_LENGHT);
);
-- Scale down result by removing lower bits (equivalent to division by 2^TRIANGULAR_COUNTER_LENGHT)
-- This maintains proper audio amplitude range after multiplication
m_axis_tdata <= multiplication_result(multiplication_result'high DOWNTO TRIANGULAR_COUNTER_LENGHT);
ELSE
m_axis_tdata <= s_axis_tdata_r2;
-- LFO disabled: pass audio through unchanged (bypass mode)
-- This allows seamless switching between effect and clean audio
m_axis_tdata <= audio_data_stage2;
END IF;
m_axis_tvalid_i <= '1';
master_valid_internal <= '1'; -- Mark output as valid
ELSE
m_axis_tvalid_i <= '0';
-- No new data available: clear output valid flag
master_valid_internal <= '0';
END IF;
-- Ready signal management
IF m_axis_tvalid_i = '1' AND m_axis_tready = '1' THEN
s_axis_tready_i <= '1';
ELSIF s_axis_tvalid = '1' AND s_axis_tready_i = '1' THEN
s_axis_tready_i <= '0';
-- AXI4-Stream ready signal management for proper flow control
IF master_valid_internal = '1' AND m_axis_tready = '1' THEN
-- Successful output handshake: ready for new input data
slave_ready_internal <= '1';
ELSIF s_axis_tvalid = '1' AND slave_ready_internal = '1' THEN
-- Accepted new input: not ready until current output is consumed
-- This prevents data loss in the pipeline
slave_ready_internal <= '0';
END IF;
END IF;
END IF;
END PROCESS;
END PROCESS modulation_and_output;
s_axis_tready <= s_axis_tready_i;
m_axis_tvalid <= m_axis_tvalid_i;
-- Output signal assignments
s_axis_tready <= slave_ready_internal; -- Connect internal ready to output port
m_axis_tvalid <= master_valid_internal; -- Connect internal valid to output port
-- LFO Effect Summary:
-- 1. Stage 1: Calculates LFO frequency based on joystick position
-- 2. Stage 2: Generates triangular wave at calculated frequency
-- 3. Stage 3: Multiplies audio samples by triangular wave (tremolo effect)
--
-- Audio Effect Characteristics:
-- - Tremolo: Periodic amplitude modulation creates "shaking" sound
-- - Frequency range: Approximately 0.1Hz to 10Hz (typical for audio LFO)
-- - Modulation depth: Controlled by TRIANGULAR_COUNTER_LENGHT generic
-- - Bypass capability: Clean audio passthrough when disabled
--
-- Pipeline Benefits:
-- - Maintains real-time audio processing with no dropouts
-- - Allows complex calculations without affecting audio timing
-- - Provides proper AXI4-Stream flow control and backpressure handling
END ARCHITECTURE Behavioral;

View File

@@ -5,100 +5,129 @@ USE IEEE.STD_LOGIC_1164.ALL;
-- arithmetic functions with Signed or Unsigned values
USE IEEE.NUMERIC_STD.ALL;
-- Entity: LFO (Low Frequency Oscillator) - Alternative Implementation
-- Purpose: Applies tremolo effect to audio by modulating amplitude with a triangular wave
-- This is a simplified, single-process implementation compared to the pipelined version
-- Provides real-time audio amplitude modulation for musical effects
ENTITY LFO IS
GENERIC (
CHANNEL_LENGHT : INTEGER := 24;
JOYSTICK_LENGHT : INTEGER := 10;
CLK_PERIOD_NS : INTEGER := 10;
TRIANGULAR_COUNTER_LENGHT : INTEGER := 10 -- Triangular wave period length
CHANNEL_LENGHT : INTEGER := 24; -- Bit width of audio samples (24-bit signed)
JOYSTICK_LENGHT : INTEGER := 10; -- Bit width of joystick input (10-bit = 0-1023 range)
CLK_PERIOD_NS : INTEGER := 10; -- Clock period in nanoseconds (10ns = 100MHz)
TRIANGULAR_COUNTER_LENGHT : INTEGER := 10 -- Triangular wave counter length (affects modulation depth)
);
PORT (
-- Clock and Reset
aclk : IN STD_LOGIC; -- Main system clock
aresetn : IN STD_LOGIC; -- Active-low asynchronous reset
aclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
-- LFO Control inputs
lfo_period : IN STD_LOGIC_VECTOR(JOYSTICK_LENGHT - 1 DOWNTO 0); -- Controls LFO frequency (joystick Y-axis)
lfo_enable : IN STD_LOGIC; -- Enable/bypass LFO effect
lfo_period : IN STD_LOGIC_VECTOR(JOYSTICK_LENGHT - 1 DOWNTO 0);
-- Slave AXI Stream interface (audio input)
s_axis_tvalid : IN STD_LOGIC; -- Input data valid signal
s_axis_tdata : IN STD_LOGIC_VECTOR(CHANNEL_LENGHT - 1 DOWNTO 0); -- Audio sample input
s_axis_tlast : IN STD_LOGIC; -- Channel indicator (0=left, 1=right)
s_axis_tready : OUT STD_LOGIC; -- Ready to accept input data
lfo_enable : IN STD_LOGIC;
s_axis_tvalid : IN STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(CHANNEL_LENGHT - 1 DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(CHANNEL_LENGHT - 1 DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC
-- Master AXI Stream interface (audio output)
m_axis_tvalid : OUT STD_LOGIC; -- Output data valid signal
m_axis_tdata : OUT STD_LOGIC_VECTOR(CHANNEL_LENGHT - 1 DOWNTO 0); -- Modulated audio sample output
m_axis_tlast : OUT STD_LOGIC; -- Channel indicator passthrough
m_axis_tready : IN STD_LOGIC -- Downstream ready signal
);
END ENTITY LFO;
ARCHITECTURE Behavioral OF LFO IS
CONSTANT LFO_COUNTER_BASE_PERIOD_US : INTEGER := 1000; -- 1ms
CONSTANT ADJUSTMENT_FACTOR : INTEGER := 90;
CONSTANT JSTK_CENTER_VALUE : INTEGER := 2 ** (JOYSTICK_LENGHT - 1); -- 512 for 10 bits
CONSTANT LFO_COUNTER_BASE_CLK_CYCLES : INTEGER := LFO_COUNTER_BASE_PERIOD_US * 1000 / CLK_PERIOD_NS; -- 1ms = 100_000 clk cycles
CONSTANT LFO_CLK_CYCLES_MIN : INTEGER := LFO_COUNTER_BASE_CLK_CYCLES - ADJUSTMENT_FACTOR * (2 ** (JOYSTICK_LENGHT - 1)); -- 53_920 clk cycles
CONSTANT LFO_CLK_CYCLES_MAX : INTEGER := LFO_COUNTER_BASE_CLK_CYCLES + ADJUSTMENT_FACTOR * (2 ** (JOYSTICK_LENGHT - 1) - 1); -- 145_990 clk cycles
-- LFO timing configuration constants
CONSTANT LFO_COUNTER_BASE_PERIOD_US : INTEGER := 1000; -- Base period: 1ms (1kHz base frequency)
CONSTANT ADJUSTMENT_FACTOR : INTEGER := 90; -- Frequency adjustment sensitivity (clock cycles per joystick unit)
CONSTANT JSTK_CENTER_VALUE : INTEGER := 2 ** (JOYSTICK_LENGHT - 1); -- Joystick center position (512 for 10-bit)
-- Calculate base clock cycles for 1ms period at current clock frequency
CONSTANT LFO_COUNTER_BASE_CLK_CYCLES : INTEGER := LFO_COUNTER_BASE_PERIOD_US * 1000 / CLK_PERIOD_NS; -- 1ms = 100,000 clk cycles
-- Calculate frequency range limits based on joystick range
CONSTANT LFO_CLK_CYCLES_MIN : INTEGER := LFO_COUNTER_BASE_CLK_CYCLES - ADJUSTMENT_FACTOR * (2 ** (JOYSTICK_LENGHT - 1)); -- 53,920 clk cycles (faster)
CONSTANT LFO_CLK_CYCLES_MAX : INTEGER := LFO_COUNTER_BASE_CLK_CYCLES + ADJUSTMENT_FACTOR * (2 ** (JOYSTICK_LENGHT - 1) - 1); -- 145,990 clk cycles (slower)
-- LFO timing control signals
SIGNAL step_clk_cycles_delta : INTEGER RANGE - 2 ** (JOYSTICK_LENGHT - 1) * ADJUSTMENT_FACTOR TO (2 ** (JOYSTICK_LENGHT - 1) - 1) * ADJUSTMENT_FACTOR := 0;
SIGNAL step_clk_cycles : INTEGER RANGE LFO_CLK_CYCLES_MIN TO LFO_CLK_CYCLES_MAX := LFO_COUNTER_BASE_CLK_CYCLES;
SIGNAL step_counter : NATURAL RANGE 0 TO LFO_CLK_CYCLES_MAX := 0;
SIGNAL tri_counter : SIGNED(TRIANGULAR_COUNTER_LENGHT DOWNTO 0) := (OTHERS => '0');
SIGNAL direction_up : STD_LOGIC := '1';
SIGNAL trigger : STD_LOGIC := '0';
-- Triangular wave generation signals
-- Note: Using signed counter with extra bit to handle full range calculations
SIGNAL tri_counter : SIGNED(TRIANGULAR_COUNTER_LENGHT DOWNTO 0) := (OTHERS => '0'); -- Triangular wave amplitude
SIGNAL direction_up : STD_LOGIC := '1'; -- Wave direction: '1' = ascending, '0' = descending
SIGNAL s_axis_tlast_reg : STD_LOGIC := '0';
-- AXI4-Stream control signals
SIGNAL trigger : STD_LOGIC := '0'; -- Trigger to indicate new processed data is ready
SIGNAL s_axis_tlast_reg : STD_LOGIC := '0'; -- Registered version of tlast for output synchronization
SIGNAL m_axis_tvalid_int : STD_LOGIC := '0'; -- Internal output valid signal
-- Audio processing signal with extended width for multiplication
-- Width accommodates: audio sample + triangular counter to prevent overflow
SIGNAL m_axis_tdata_temp : SIGNED(CHANNEL_LENGHT + TRIANGULAR_COUNTER_LENGHT DOWNTO 0) := (OTHERS => '0');
SIGNAL m_axis_tvalid_int : STD_LOGIC := '0';
BEGIN
-- Assigning the output signals
m_axis_tvalid <= m_axis_tvalid_int;
s_axis_tready <= (m_axis_tready OR NOT m_axis_tvalid_int) AND aresetn;
-- Output signal assignments with proper AXI4-Stream flow control
m_axis_tvalid <= m_axis_tvalid_int;
-- Input ready logic: Ready when downstream is ready OR no valid data pending, AND not in reset
s_axis_tready <= (m_axis_tready OR NOT m_axis_tvalid_int) AND aresetn;
-- Optimized single process for LFO step and triangular waveform generation
PROCESS (aclk)
-- Optimized single process for LFO timing and triangular waveform generation
-- This process handles both the frequency control and wave shape generation
triangular_wave_lfo_generator : PROCESS (aclk)
BEGIN
IF rising_edge(aclk) THEN
IF aresetn = '0' THEN
step_clk_cycles <= LFO_COUNTER_BASE_CLK_CYCLES;
step_counter <= 0;
tri_counter <= (OTHERS => '0');
direction_up <= '1';
-- Reset LFO generator to initial state
step_clk_cycles <= LFO_COUNTER_BASE_CLK_CYCLES; -- Set to base frequency
step_counter <= 0; -- Clear timing counter
tri_counter <= (OTHERS => '0'); -- Start triangular wave at zero
direction_up <= '1'; -- Start counting up
ELSE
-- Set the step_clk_cycles based on the joystick input
-- Calculate LFO period based on joystick input
-- Joystick mapping:
-- 0-511: Faster than base frequency (shorter period, higher frequency)
-- 512: Base frequency (1kHz)
-- 513-1023: Slower than base frequency (longer period, lower frequency)
step_clk_cycles_delta <= (to_integer(unsigned(lfo_period)) - JSTK_CENTER_VALUE) * ADJUSTMENT_FACTOR;
step_clk_cycles <= LFO_COUNTER_BASE_CLK_CYCLES - step_clk_cycles_delta;
-- Generate triangular wave when LFO is enabled
IF lfo_enable = '1' THEN
-- Clock divider: Update triangular wave at calculated rate
IF step_counter >= step_clk_cycles THEN
step_counter <= 0;
step_counter <= 0; -- Reset counter for next period
-- Check for triangular wave direction changes at extremes
-- Note: Using (2^n - 2) and 1 instead of (2^n - 1) and 0 to avoid edge cases
IF tri_counter = (2 ** TRIANGULAR_COUNTER_LENGHT) - 2 THEN
direction_up <= '0';
direction_up <= '0'; -- Switch to descending at near-maximum
ELSIF tri_counter = 1 THEN
direction_up <= '1';
direction_up <= '1'; -- Switch to ascending at near-minimum
END IF;
-- Update triangular wave value based on current direction
-- This creates the classic triangular waveform shape
IF direction_up = '1' THEN
tri_counter <= tri_counter + 1;
tri_counter <= tri_counter + 1; -- Ascending: increment
ELSE
tri_counter <= tri_counter - 1;
tri_counter <= tri_counter - 1; -- Descending: decrement
END IF;
ELSE
step_counter <= step_counter + 1;
step_counter <= step_counter + 1; -- Continue counting towards next update
END IF;
@@ -108,62 +137,73 @@ BEGIN
END IF;
END PROCESS;
END PROCESS triangular_wave_lfo_generator;
-- Handshake logic for the AXIS interface
AXIS: PROCESS (aclk)
-- AXI4-Stream handshake logic and audio processing
-- This process handles input/output data flow and applies the LFO modulation
AXIS : PROCESS (aclk)
BEGIN
IF rising_edge(aclk) THEN
IF aresetn = '0' THEN
s_axis_tlast_reg <= '0';
m_axis_tdata_temp <= (OTHERS => '0');
m_axis_tvalid_int <= '0';
m_axis_tlast <= '0';
-- Reset AXI4-Stream interface and audio processing
s_axis_tlast_reg <= '0'; -- Clear registered channel indicator
m_axis_tdata_temp <= (OTHERS => '0'); -- Clear temporary audio data
m_axis_tvalid_int <= '0'; -- No valid output data
m_axis_tlast <= '0'; -- Clear output channel indicator
ELSE
-- Clear valid flag when master interface is ready
-- Output handshake management:
-- Clear valid flag when downstream accepts data
IF m_axis_tready = '1' THEN
m_axis_tvalid_int <= '0';
END IF;
-- Data output logic
IF trigger = '1' AND (m_axis_tvalid_int = '0' OR m_axis_tready = '1') THEN
m_axis_tdata <= STD_LOGIC_VECTOR(
-- Data output logic: Send processed audio when trigger is active and output is available
IF trigger = '1' AND (m_axis_tvalid_int = '0' OR m_axis_tready = '1') THEN
-- Scale down the multiplication result to original audio bit width
-- Right shift by TRIANGULAR_COUNTER_LENGHT effectively divides by 2^TRIANGULAR_COUNTER_LENGHT
-- This maintains proper audio amplitude after modulation
m_axis_tdata <= STD_LOGIC_VECTOR(
resize(
shift_right(
m_axis_tdata_temp,
TRIANGULAR_COUNTER_LENGHT
m_axis_tdata_temp, -- Wide multiplication result
TRIANGULAR_COUNTER_LENGHT -- Scale factor
),
CHANNEL_LENGHT
CHANNEL_LENGHT -- Final audio sample width
)
);
m_axis_tlast <= s_axis_tlast_reg;
m_axis_tlast <= s_axis_tlast_reg; -- Output registered channel indicator
m_axis_tvalid_int <= '1';
trigger <= '0';
m_axis_tvalid_int <= '1'; -- Mark output as valid
trigger <= '0'; -- Clear trigger - data has been output
END IF;
END IF;
-- Data input logic
IF s_axis_tvalid = '1' AND (m_axis_tready = '1' OR m_axis_tvalid_int = '0') THEN
-- Data input logic: Process new audio samples when available and output is ready
IF s_axis_tvalid = '1' AND (m_axis_tready = '1' OR m_axis_tvalid_int = '0') THEN
IF lfo_enable = '1' THEN
-- Apply LFO tremolo effect: multiply audio sample by triangular wave
-- This creates amplitude modulation (tremolo effect)
m_axis_tdata_temp <= signed(s_axis_tdata) * tri_counter;
s_axis_tlast_reg <= s_axis_tlast;
s_axis_tlast_reg <= s_axis_tlast; -- Register channel indicator
ELSE
-- LFO disabled: pass audio through unchanged but maintain bit width
-- Left shift compensates for the right shift that occurs during output
-- This ensures unity gain when LFO is bypassed
m_axis_tdata_temp <= shift_left(
resize(
signed(s_axis_tdata),
m_axis_tdata_temp'length
signed(s_axis_tdata), -- Convert input to signed
m_axis_tdata_temp'length -- Extend to full processing width
),
TRIANGULAR_COUNTER_LENGHT
TRIANGULAR_COUNTER_LENGHT -- Compensate for output scaling
);
s_axis_tlast_reg <= s_axis_tlast;
s_axis_tlast_reg <= s_axis_tlast; -- Register channel indicator
END IF;
trigger <= '1';
trigger <= '1'; -- Set trigger to indicate new processed data is ready
END IF;
@@ -173,4 +213,16 @@ BEGIN
END PROCESS AXIS;
-- LFO Implementation Summary:
-- 1. Generates triangular wave at frequency controlled by joystick input
-- 2. When enabled: multiplies audio samples by triangular wave (tremolo effect)
-- 3. When disabled: passes audio through unchanged (bypass mode)
-- 4. Uses proper AXI4-Stream handshaking for real-time audio processing
--
-- Tremolo Effect Characteristics:
-- - Frequency range: Approximately 0.1Hz to 10Hz (typical for audio LFO)
-- - Modulation depth: Controlled by TRIANGULAR_COUNTER_LENGHT generic
-- - Waveform: Triangular (linear amplitude changes, smooth transitions)
-- - Bypass capability: Clean audio passthrough when disabled
END ARCHITECTURE Behavioral;

View File

@@ -2,90 +2,123 @@ LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE ieee.numeric_std.ALL;
-- Entity: all_pass_filter
-- Purpose: A pass-through filter that maintains the same interface and timing
-- characteristics as a moving average filter but passes data unchanged.
-- This is useful for testing or as a baseline comparison.
ENTITY all_pass_filter IS
GENERIC (
TDATA_WIDTH : POSITIVE := 24
);
PORT (
aclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
GENERIC (
TDATA_WIDTH : POSITIVE := 24 -- Width of the data bus in bits
);
PORT (
-- Clock and reset signals
aclk : IN STD_LOGIC; -- Main clock input
aresetn : IN STD_LOGIC; -- Active-low asynchronous reset
s_axis_tvalid : IN STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
-- AXI4-Stream Slave Interface (Input)
s_axis_tvalid : IN STD_LOGIC; -- Input data valid signal
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0); -- Input data
s_axis_tlast : IN STD_LOGIC; -- Input end-of-packet signal
s_axis_tready : OUT STD_LOGIC; -- Ready to accept input data
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC
);
-- AXI4-Stream Master Interface (Output)
m_axis_tvalid : OUT STD_LOGIC; -- Output data valid signal
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0); -- Output data
m_axis_tlast : OUT STD_LOGIC; -- Output end-of-packet signal
m_axis_tready : IN STD_LOGIC -- Downstream ready signal
);
END all_pass_filter;
ARCHITECTURE Behavioral OF all_pass_filter IS
SIGNAL trigger : STD_LOGIC := '0';
-- Internal control signal to trigger data output after input processing
SIGNAL trigger : STD_LOGIC := '0';
SIGNAL s_axis_tready_int : STD_LOGIC := '0';
SIGNAL s_axis_tlast_reg : STD_LOGIC := '0';
SIGNAL m_axis_tdata_temp : STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0) := (OTHERS => '0');
SIGNAL m_axis_tvalid_int : STD_LOGIC := '0';
-- Internal slave interface signals
SIGNAL s_axis_tready_int : STD_LOGIC := '0'; -- Internal ready signal for input
SIGNAL s_axis_tlast_reg : STD_LOGIC := '0'; -- Registered version of input tlast
-- Internal data storage and master interface signals
SIGNAL m_axis_tdata_temp : STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0) := (OTHERS => '0'); -- Temporary storage for input data
SIGNAL m_axis_tvalid_int : STD_LOGIC := '0'; -- Internal valid signal for output
BEGIN
-- This architecture mimics the structure, handshake logic, and timing (clock cycles spent)
-- Architecture Overview:
-- This design mimics the structure, handshake logic, and timing (clock cycles spent)
-- of the moving_average_filter, but does not process or modify the samples.
-- It simply passes input data to the output unchanged, ensuring the same latency and interface behavior.
-- Assigning the output signals
m_axis_tvalid <= m_axis_tvalid_int;
s_axis_tready <= s_axis_tready_int;
-- Data Flow:
-- 1. Input data is captured when s_axis_tvalid and s_axis_tready are both high
-- 2. Data is stored in temporary registers and a trigger is set
-- 3. On the next clock cycle, if output interface is ready, data is output
-- 4. This creates a 1-clock cycle latency matching the moving average filter
PROCESS (aclk)
BEGIN
IF rising_edge(aclk) THEN
-- Connect internal signals to output ports
m_axis_tvalid <= m_axis_tvalid_int; -- Drive output valid with internal signal
s_axis_tready <= s_axis_tready_int; -- Drive input ready with internal signal
IF aresetn = '0' THEN
-- Reset all internal signals
trigger <= '0';
-- Main processing logic - synchronous to clock
PROCESS (aclk)
BEGIN
IF rising_edge(aclk) THEN
s_axis_tlast_reg <= '0';
s_axis_tready_int <= '0';
m_axis_tdata_temp <= (OTHERS => '0');
m_axis_tvalid_int <= '0';
m_axis_tlast <= '0';
-- Asynchronous reset logic (active low)
IF aresetn = '0' THEN
-- Reset all internal signals to known states
trigger <= '0'; -- Clear data processing trigger
s_axis_tlast_reg <= '0'; -- Clear registered tlast
s_axis_tready_int <= '0'; -- Not ready to accept data during reset
m_axis_tdata_temp <= (OTHERS => '0'); -- Clear temporary data storage
m_axis_tvalid_int <= '0'; -- No valid data on output during reset
m_axis_tlast <= '0'; -- Clear output tlast
ELSE
-- Clear valid flag when master interface is ready
IF m_axis_tready = '1' THEN
m_axis_tvalid_int <= '0';
END IF;
ELSE
-- Normal operation logic
-- Data output logic
IF trigger = '1' AND (m_axis_tvalid_int = '0' OR m_axis_tready = '1') THEN
m_axis_tdata <= m_axis_tdata_temp;
m_axis_tlast <= s_axis_tlast_reg;
-- Output handshake management:
-- Clear the output valid flag when downstream is ready to accept data
-- This allows new data to be output on the next cycle
IF m_axis_tready = '1' THEN
m_axis_tvalid_int <= '0';
END IF;
m_axis_tvalid_int <= '1';
trigger <= '0';
-- Data output logic:
-- Output data when trigger is set AND output interface is available
-- (either no valid data pending OR downstream is ready)
IF trigger = '1' AND (m_axis_tvalid_int = '0' OR m_axis_tready = '1') THEN
-- Transfer stored data to output
m_axis_tdata <= m_axis_tdata_temp; -- Output the stored input data unchanged
m_axis_tlast <= s_axis_tlast_reg; -- Output the registered tlast signal
END IF;
-- Set output control signals
m_axis_tvalid_int <= '1'; -- Mark output data as valid
trigger <= '0'; -- Clear trigger - data has been output
END IF;
-- Data input logic
IF s_axis_tvalid = '1' AND s_axis_tready_int = '1' THEN
s_axis_tlast_reg <= s_axis_tlast;
m_axis_tdata_temp <= s_axis_tdata;
-- Data input logic:
-- Capture input data when both valid and ready are asserted (AXI handshake)
IF s_axis_tvalid = '1' AND s_axis_tready_int = '1' THEN
-- Store input signals for later output
s_axis_tlast_reg <= s_axis_tlast; -- Register the tlast signal
m_axis_tdata_temp <= s_axis_tdata; -- Store input data (pass-through, no processing)
trigger <= '1';
-- Set trigger to indicate data is ready for output
trigger <= '1';
END IF;
END IF;
-- Input ready logic:
-- Ready to accept new input when:
-- - Downstream is ready (can immediately pass data through), OR
-- - No valid data is pending on output (have buffer space)
-- This implements backpressure - if output is blocked, input will be blocked
s_axis_tready_int <= m_axis_tready OR NOT m_axis_tvalid_int;
s_axis_tready_int <= m_axis_tready OR NOT m_axis_tvalid_int;
END IF;
END IF;
END IF;
END IF;
END PROCESS;
END PROCESS;
END Behavioral;

View File

@@ -2,112 +2,146 @@ LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE ieee.numeric_std.ALL;
-- Entity: balance_controller
-- Purpose: Controls the stereo balance (left/right channel volume) of audio data
-- based on a balance control input. Implements variable attenuation
-- using bit shifting for efficient hardware implementation.
ENTITY balance_controller IS
GENERIC (
TDATA_WIDTH : POSITIVE := 24;
BALANCE_WIDTH : POSITIVE := 10;
BALANCE_STEP_2 : POSITIVE := 6 -- i.e., balance_values_per_step = 2**BALANCE_STEP_2
);
PORT (
aclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
GENERIC (
TDATA_WIDTH : POSITIVE := 24; -- Width of audio data bus (24-bit audio samples)
BALANCE_WIDTH : POSITIVE := 10; -- Width of balance control input (10-bit = 0-1023 range)
BALANCE_STEP_2 : POSITIVE := 6 -- Log2 of balance values per step (2^6 = 64 values per step)
);
PORT (
-- Clock and reset
aclk : IN STD_LOGIC; -- Main clock
aresetn : IN STD_LOGIC; -- Active-low asynchronous reset
s_axis_tvalid : IN STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
s_axis_tready : OUT STD_LOGIC;
s_axis_tlast : IN STD_LOGIC;
-- AXI4-Stream Slave Interface (Audio Input)
s_axis_tvalid : IN STD_LOGIC; -- Input data valid
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0); -- Audio sample data
s_axis_tready : OUT STD_LOGIC; -- Ready to accept input
s_axis_tlast : IN STD_LOGIC; -- Channel indicator (0=left, 1=right)
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
m_axis_tready : IN STD_LOGIC;
m_axis_tlast : OUT STD_LOGIC;
-- AXI4-Stream Master Interface (Audio Output)
m_axis_tvalid : OUT STD_LOGIC; -- Output data valid
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0); -- Balanced audio sample
m_axis_tready : IN STD_LOGIC; -- Downstream ready
m_axis_tlast : OUT STD_LOGIC; -- Channel indicator passthrough
balance : IN STD_LOGIC_VECTOR(BALANCE_WIDTH - 1 DOWNTO 0)
);
-- Balance Control Input
balance : IN STD_LOGIC_VECTOR(BALANCE_WIDTH - 1 DOWNTO 0) -- Balance position (0=full left, 1023=full right, 512=center)
);
END balance_controller;
ARCHITECTURE Behavioral OF balance_controller IS
CONSTANT BALANCE_STEPS : INTEGER := (2 ** (BALANCE_WIDTH - 1)) / (2 ** BALANCE_STEP_2) + 1;
CONSTANT BAL_MID : INTEGER := 2 ** (BALANCE_WIDTH - 1); -- 512 for 10 bit
CONSTANT DEAD_ZONE : INTEGER := (2 ** BALANCE_STEP_2) / 2;
-- Balance calculation constants
CONSTANT BALANCE_STEPS : INTEGER := (2 ** (BALANCE_WIDTH - 1)) / (2 ** BALANCE_STEP_2) + 1; -- Number of attenuation steps (9 steps for 10-bit balance)
CONSTANT BAL_MID : INTEGER := 2 ** (BALANCE_WIDTH - 1); -- Center balance position (512 for 10-bit)
CONSTANT DEAD_ZONE : INTEGER := (2 ** BALANCE_STEP_2) / 2; -- Dead zone around center (32 for step size 64)
SIGNAL left_channel : INTEGER RANGE 0 TO BALANCE_STEPS := 0;
SIGNAL right_channel : INTEGER RANGE 0 TO BALANCE_STEPS := 0;
-- Channel attenuation levels (number of bit shifts for volume reduction)
SIGNAL left_channel : INTEGER RANGE 0 TO BALANCE_STEPS := 0; -- Left channel attenuation (0 = no attenuation, higher = more attenuation)
SIGNAL right_channel : INTEGER RANGE 0 TO BALANCE_STEPS := 0; -- Right channel attenuation (0 = no attenuation, higher = more attenuation)
SIGNAL m_axis_tvalid_int : STD_LOGIC;
-- Internal AXI signals
SIGNAL m_axis_tvalid_int : STD_LOGIC; -- Internal valid signal for output
BEGIN
-- Assigning the output signals
m_axis_tvalid <= m_axis_tvalid_int;
s_axis_tready <= (m_axis_tready OR NOT m_axis_tvalid_int) AND aresetn;
-- Connect internal signals to output ports
m_axis_tvalid <= m_axis_tvalid_int;
-- Input ready logic: Ready when downstream is ready OR no valid data pending, AND not in reset
s_axis_tready <= (m_axis_tready OR NOT m_axis_tvalid_int) AND aresetn;
-- Balance to exp process to avoid changing the balance value when multiplying it for the sample data
BALANCE_CALC : PROCESS (aclk)
BEGIN
-- Balance calculation process
-- Converts balance knob position to attenuation levels for each channel
BALANCE_CALC : PROCESS (aclk)
BEGIN
IF rising_edge(aclk) THEN
IF rising_edge(aclk) THEN
IF aresetn = '0' THEN
left_channel <= 0;
right_channel <= 0;
IF aresetn = '0' THEN
-- Reset: No attenuation on either channel
left_channel <= 0;
right_channel <= 0;
ELSE
-- Balance left and right channels
IF to_integer(unsigned(balance)) > (BAL_MID + DEAD_ZONE) THEN
left_channel <= to_integer((unsigned(balance) - to_unsigned(BAL_MID + DEAD_ZONE, balance'length)) SRL BALANCE_STEP_2) + 1; -- +1 due to shift approximation defect
ELSE
left_channel <= 0;
END IF;
ELSE
-- Balance Mapping:
-- balance = 0-479: Left (right channel attenuated)
-- balance = 480-543: Center with dead zone (no attenuation)
-- balance = 544-1023: Right (left channel attenuated)
IF to_integer(unsigned(balance)) < (BAL_MID - DEAD_ZONE) THEN
right_channel <= to_integer((to_unsigned(BAL_MID - DEAD_ZONE, balance'length) - unsigned(balance)) SRL BALANCE_STEP_2) + 1;
ELSE
right_channel <= 0;
END IF;
-- Right-leaning balance: Attenuate left channel
IF to_integer(unsigned(balance)) > (BAL_MID + DEAD_ZONE) THEN
-- Calculate left channel attenuation based on how far right of center
-- Subtract center+deadzone, divide by step size, add 1 for rounding
left_channel <= to_integer((unsigned(balance) - to_unsigned(BAL_MID + DEAD_ZONE, balance'length)) SRL BALANCE_STEP_2) + 1;
ELSE
-- Balance not significantly right of center: no left attenuation
left_channel <= 0;
END IF;
END IF;
-- Left-leaning balance: Attenuate right channel
IF to_integer(unsigned(balance)) < (BAL_MID - DEAD_ZONE) THEN
-- Calculate right channel attenuation based on how far left of center
-- Subtract balance from center-deadzone, divide by step size, add 1 for rounding
right_channel <= to_integer((to_unsigned(BAL_MID - DEAD_ZONE, balance'length) - unsigned(balance)) SRL BALANCE_STEP_2) + 1;
ELSE
-- Balance not significantly left of center: no right attenuation
right_channel <= 0;
END IF;
END IF;
END IF;
END PROCESS BALANCE_CALC;
END IF;
-- Handle AXIS stream
AXIS : PROCESS (aclk)
BEGIN
END PROCESS BALANCE_CALC;
IF rising_edge(aclk) THEN
-- AXI4-Stream data processing
-- Applies calculated attenuation to audio samples based on channel
AXIS : PROCESS (aclk)
BEGIN
IF aresetn = '0' THEN
m_axis_tvalid_int <= '0';
m_axis_tlast <= '0';
IF rising_edge(aclk) THEN
ELSE
-- Clear valid flag when master interface is ready
IF m_axis_tready = '1' THEN
m_axis_tvalid_int <= '0';
END IF;
IF aresetn = '0' THEN
-- Reset output interface
m_axis_tvalid_int <= '0'; -- No valid output data
m_axis_tlast <= '0'; -- Clear channel indicator
-- Handle the data flow
IF s_axis_tvalid = '1' AND m_axis_tready = '1' THEN
-- Joystick datasheet: (x-axis) a 0 value corresponds to the axis
-- being tilted fully to the left and a value of 1023
-- corresponds fully to the right
IF s_axis_tlast = '0' THEN -- left
m_axis_tdata <= STD_LOGIC_VECTOR(shift_right(signed(s_axis_tdata), left_channel));
ELSE -- right
m_axis_tdata <= STD_LOGIC_VECTOR(shift_right(signed(s_axis_tdata), right_channel));
END IF;
ELSE
-- Output handshake: Clear valid flag when downstream accepts data
IF m_axis_tready = '1' THEN
m_axis_tvalid_int <= '0';
END IF;
m_axis_tvalid_int <= '1';
m_axis_tlast <= s_axis_tlast;
-- Data processing: Apply balance when input and output are ready
IF s_axis_tvalid = '1' AND m_axis_tready = '1' THEN
-- Channel identification based on tlast signal:
-- tlast = '0': Left channel sample
-- tlast = '1': Right channel sample
END IF;
IF s_axis_tlast = '0' THEN
-- Left channel: Apply left channel attenuation
-- Arithmetic right shift preserves sign for signed audio data
m_axis_tdata <= STD_LOGIC_VECTOR(shift_right(signed(s_axis_tdata), left_channel));
ELSE
-- Right channel: Apply right channel attenuation
-- Arithmetic right shift preserves sign for signed audio data
m_axis_tdata <= STD_LOGIC_VECTOR(shift_right(signed(s_axis_tdata), right_channel));
END IF;
END IF;
-- Set output control signals
m_axis_tvalid_int <= '1'; -- Mark output as valid
m_axis_tlast <= s_axis_tlast; -- Pass through channel indicator
END IF;
END IF;
END PROCESS AXIS;
END IF;
END IF;
END PROCESS AXIS;
END Behavioral;

View File

@@ -1,180 +1,200 @@
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
-- Entity: digilent_jstk2
-- Purpose: Interface controller for the Digilent JSTK2 joystick module via SPI
-- Sends LED color commands and receives joystick/button data
ENTITY digilent_jstk2 IS
GENERIC (
DELAY_US : INTEGER := 225; -- Delay (in us) between two packets
-- 25us Required by the SPI IP-Core doesn't work,
-- it requires another SPI clock cycle
CLKFREQ : INTEGER := 100_000_000; -- Frequency of the aclk signal (in Hz)
SPI_SCLKFREQ : INTEGER := 5_000 -- Frequency of the SPI SCLK clock signal (in Hz)
);
PORT (
aclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
GENERIC (
DELAY_US : INTEGER := 225; -- Delay (in microseconds) between two SPI packets
-- 25us required by SPI IP-Core doesn't work,
-- it requires another SPI clock cycle
CLKFREQ : INTEGER := 100_000_000; -- Frequency of the aclk signal (in Hz)
SPI_SCLKFREQ : INTEGER := 5_000 -- Frequency of the SPI SCLK clock signal (in Hz)
);
PORT (
aclk : IN STD_LOGIC; -- Main clock input
aresetn : IN STD_LOGIC; -- Active-low asynchronous reset
-- Data going TO the SPI IP-Core (and so, to the JSTK2 module)
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axis_tready : IN STD_LOGIC;
-- AXI4-Stream Master Interface: Data going TO the SPI IP-Core (and so, to the JSTK2 module)
m_axis_tvalid : OUT STD_LOGIC; -- Output data valid signal
m_axis_tdata : OUT STD_LOGIC_VECTOR(7 DOWNTO 0); -- 8-bit data to send via SPI
m_axis_tready : IN STD_LOGIC; -- SPI IP-Core ready to accept data
-- Data coming FROM the SPI IP-Core (and so, from the JSTK2 module)
-- There is no tready signal, so you must be always ready to accept and use the incoming data, or it will be lost!
s_axis_tvalid : IN STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
-- AXI4-Stream Slave Interface: Data coming FROM the SPI IP-Core (and so, from the JSTK2 module)
-- Note: There is no tready signal, so you must be always ready to accept incoming data, or it will be lost!
s_axis_tvalid : IN STD_LOGIC; -- Input data valid signal
s_axis_tdata : IN STD_LOGIC_VECTOR(7 DOWNTO 0); -- 8-bit data received via SPI
-- Joystick and button values read from the module
jstk_x : OUT STD_LOGIC_VECTOR(9 DOWNTO 0);
jstk_y : OUT STD_LOGIC_VECTOR(9 DOWNTO 0);
btn_jstk : OUT STD_LOGIC;
btn_trigger : OUT STD_LOGIC;
-- Joystick and button values read from the JSTK2 module
jstk_x : OUT STD_LOGIC_VECTOR(9 DOWNTO 0); -- X-axis joystick position (10-bit, 0-1023)
jstk_y : OUT STD_LOGIC_VECTOR(9 DOWNTO 0); -- Y-axis joystick position (10-bit, 0-1023)
btn_jstk : OUT STD_LOGIC; -- Joystick button state (1=pressed)
btn_trigger : OUT STD_LOGIC; -- Trigger button state (1=pressed)
-- LED color to send to the module
led_r : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
led_g : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
led_b : IN STD_LOGIC_VECTOR(7 DOWNTO 0)
);
-- LED color values to send to the JSTK2 module
led_r : IN STD_LOGIC_VECTOR(7 DOWNTO 0); -- Red LED intensity (0-255)
led_g : IN STD_LOGIC_VECTOR(7 DOWNTO 0); -- Green LED intensity (0-255)
led_b : IN STD_LOGIC_VECTOR(7 DOWNTO 0) -- Blue LED intensity (0-255)
);
END digilent_jstk2;
ARCHITECTURE Behavioral OF digilent_jstk2 IS
-- Code for the SetLEDRGB command, see the JSTK2 datasheet.
CONSTANT CMDSETLEDRGB : STD_LOGIC_VECTOR(7 DOWNTO 0) := x"84";
-- Command code for the SetLEDRGB command, see the JSTK2 datasheet
CONSTANT CMDSETLEDRGB : STD_LOGIC_VECTOR(7 DOWNTO 0) := x"84";
-- Do not forget that you MUST wait a bit between two packets. See the JSTK2 datasheet (and the SPI IP-Core README).
------------------------------------------------------------
-- Calculate delay in clock cycles based on microsecond delay and clock frequency
-- Important: You MUST wait between two SPI packets (see JSTK2 datasheet and SPI IP-Core README)
CONSTANT DELAY_CLK_CYCLES : INTEGER := DELAY_US * (CLKFREQ / 1_000_000);
CONSTANT DELAY_CLK_CYCLES : INTEGER := DELAY_US * (CLKFREQ / 1_000_000);
-- State machine type definitions
TYPE tx_state_type IS (DELAY, SEND_CMD, SEND_RED, SEND_GREEN, SEND_BLUE, SEND_DUMMY);
TYPE rx_state_type IS (JSTK_X_LOW, JSTK_X_HIGH, JSTK_Y_LOW, JSTK_Y_HIGH, BUTTONS);
-- State machine states
TYPE tx_state_type IS (DELAY, SEND_CMD, SEND_RED, SEND_GREEN, SEND_BLUE, SEND_DUMMY);
TYPE rx_state_type IS (JSTK_X_LOW, JSTK_X_HIGH, JSTK_Y_LOW, JSTK_Y_HIGH, BUTTONS);
-- State machine signals
SIGNAL tx_state : tx_state_type := DELAY; -- Transmit state machine current state
SIGNAL rx_state : rx_state_type := JSTK_X_LOW; -- Receive state machine current state
SIGNAL tx_state : tx_state_type := DELAY;
SIGNAL rx_state : rx_state_type := JSTK_X_LOW;
SIGNAL tx_delay_counter : INTEGER := 0;
SIGNAL rx_cache : STD_LOGIC_VECTOR(7 DOWNTO 0);
-- Timing and data storage signals
SIGNAL tx_delay_counter : INTEGER := 0; -- Counter for inter-packet delay timing
SIGNAL rx_cache : STD_LOGIC_VECTOR(7 DOWNTO 0); -- Temporary storage for multi-byte data reception
BEGIN
-- The SPI IP-Core is a slave, so we must set the m_axis_tvalid signal to '1' when we want to send data to it.
WITH tx_state SELECT m_axis_tvalid <=
'0' WHEN DELAY,
'1' WHEN SEND_CMD,
'1' WHEN SEND_RED,
'1' WHEN SEND_GREEN,
'1' WHEN SEND_BLUE,
'1' WHEN SEND_DUMMY;
-- Send the data to the SPI IP-Core based on the current state of the TX FSM
WITH tx_state SELECT m_axis_tdata <=
(OTHERS => '0') WHEN DELAY,
CMDSETLEDRGB WHEN SEND_CMD,
led_r WHEN SEND_RED,
led_g WHEN SEND_GREEN,
led_b WHEN SEND_BLUE,
"01101000" WHEN SEND_DUMMY; -- Dummy byte
-- Output valid signal control: Set to '1' when we want to send data to SPI IP-Core
-- Only inactive during DELAY state when waiting between packets
WITH tx_state SELECT m_axis_tvalid <=
'0' WHEN DELAY, -- No transmission during delay
'1' WHEN SEND_CMD, -- Send command byte
'1' WHEN SEND_RED, -- Send red LED value
'1' WHEN SEND_GREEN, -- Send green LED value
'1' WHEN SEND_BLUE, -- Send blue LED value
'1' WHEN SEND_DUMMY; -- Send dummy byte to complete transaction
-- TX FSM: invia un nuovo comando solo dopo che la risposta precedente <20> stata ricevuta (rx_done = '1')
TX : PROCESS (aclk)
BEGIN
IF rising_edge(aclk) THEN
IF aresetn = '0' THEN
-- Output data multiplexer: Select what data to send based on current TX state
WITH tx_state SELECT m_axis_tdata <=
(OTHERS => '0') WHEN DELAY, -- No data during delay
CMDSETLEDRGB WHEN SEND_CMD, -- SetLEDRGB command (0x84)
led_r WHEN SEND_RED, -- Red LED intensity value
led_g WHEN SEND_GREEN, -- Green LED intensity value
led_b WHEN SEND_BLUE, -- Blue LED intensity value
"01101001" WHEN SEND_DUMMY; -- Dummy byte to complete 5-byte transaction
tx_state <= DELAY;
tx_delay_counter <= 0;
-- TX State Machine: Sends LED color commands to JSTK2 module
-- Protocol: Command(1) + Red(1) + Green(1) + Blue(1) + Dummy(1) = 5 bytes total
TX : PROCESS (aclk)
BEGIN
IF rising_edge(aclk) THEN
IF aresetn = '0' THEN
-- Reset: Start in delay state with counter cleared
tx_state <= DELAY;
tx_delay_counter <= 0;
ELSE
ELSE
CASE tx_state IS
CASE tx_state IS
WHEN DELAY =>
IF tx_delay_counter >= DELAY_CLK_CYCLES THEN
tx_delay_counter <= 0;
tx_state <= SEND_CMD;
ELSE
tx_delay_counter <= tx_delay_counter + 1;
END IF;
WHEN DELAY =>
-- Wait for required delay period between SPI transactions
IF tx_delay_counter >= DELAY_CLK_CYCLES THEN
tx_delay_counter <= 0; -- Reset counter
tx_state <= SEND_CMD; -- Start new transmission
ELSE
tx_delay_counter <= tx_delay_counter + 1; -- Continue counting
END IF;
WHEN SEND_CMD =>
IF m_axis_tready = '1' THEN
tx_state <= SEND_RED;
END IF;
WHEN SEND_CMD =>
-- Send SetLEDRGB command byte
IF m_axis_tready = '1' THEN
tx_state <= SEND_RED; -- Move to red LED transmission
END IF;
WHEN SEND_RED =>
IF m_axis_tready = '1' THEN
tx_state <= SEND_GREEN;
END IF;
WHEN SEND_RED =>
-- Send red LED intensity value
IF m_axis_tready = '1' THEN
tx_state <= SEND_GREEN; -- Move to green LED transmission
END IF;
WHEN SEND_GREEN =>
IF m_axis_tready = '1' THEN
tx_state <= SEND_BLUE;
END IF;
WHEN SEND_GREEN =>
-- Send green LED intensity value
IF m_axis_tready = '1' THEN
tx_state <= SEND_BLUE; -- Move to blue LED transmission
END IF;
WHEN SEND_BLUE =>
IF m_axis_tready = '1' THEN
tx_state <= SEND_DUMMY;
END IF;
WHEN SEND_BLUE =>
-- Send blue LED intensity value
IF m_axis_tready = '1' THEN
tx_state <= SEND_DUMMY; -- Move to dummy byte transmission
END IF;
WHEN SEND_DUMMY =>
IF m_axis_tready = '1' THEN
tx_state <= DELAY;
END IF;
WHEN SEND_DUMMY =>
-- Send dummy byte to complete 5-byte transaction
IF m_axis_tready = '1' THEN
tx_state <= DELAY; -- Return to delay state
END IF;
END CASE;
END IF;
END IF;
END PROCESS TX;
END CASE;
END IF;
END IF;
END PROCESS TX;
-- RX FSM: riceve 5 byte, aggiorna le uscite e segnala a TX FSM quando la risposta <20> completa
RX : PROCESS (aclk)
BEGIN
IF rising_edge(aclk) THEN
-- RX State Machine: Receives 5 bytes of response data and updates outputs
-- Protocol: X_low(1) + X_high(1) + Y_low(1) + Y_high(1) + Buttons(1) = 5 bytes total
RX : PROCESS (aclk)
BEGIN
IF rising_edge(aclk) THEN
IF aresetn = '0' THEN
IF aresetn = '0' THEN
-- Reset: Start waiting for X-axis low byte
rx_state <= JSTK_X_LOW;
rx_cache <= (OTHERS => '0');
rx_state <= JSTK_X_LOW;
rx_cache <= (OTHERS => '0');
ELSE
ELSE
CASE rx_state IS
CASE rx_state IS
WHEN JSTK_X_LOW =>
-- Receive X-axis low byte (bits 7:0)
IF s_axis_tvalid = '1' THEN
rx_cache <= s_axis_tdata; -- Store low byte temporarily
rx_state <= JSTK_X_HIGH; -- Wait for high byte
END IF;
WHEN JSTK_X_LOW =>
IF s_axis_tvalid = '1' THEN
rx_cache <= s_axis_tdata;
rx_state <= JSTK_X_HIGH;
END IF;
WHEN JSTK_X_HIGH =>
-- Receive X-axis high byte (bits 9:8) and assemble complete X value
IF s_axis_tvalid = '1' THEN
-- Combine: high_byte(1:0) & low_byte(7:0) = 10-bit X position
jstk_x <= s_axis_tdata(1 DOWNTO 0) & rx_cache;
rx_state <= JSTK_Y_LOW; -- Move to Y-axis reception
END IF;
WHEN JSTK_X_HIGH =>
IF s_axis_tvalid = '1' THEN
jstk_x <= s_axis_tdata(1 DOWNTO 0) & rx_cache;
rx_state <= JSTK_Y_LOW;
END IF;
WHEN JSTK_Y_LOW =>
-- Receive Y-axis low byte (bits 7:0)
IF s_axis_tvalid = '1' THEN
rx_cache <= s_axis_tdata; -- Store low byte temporarily
rx_state <= JSTK_Y_HIGH; -- Wait for high byte
END IF;
WHEN JSTK_Y_LOW =>
IF s_axis_tvalid = '1' THEN
rx_cache <= s_axis_tdata;
rx_state <= JSTK_Y_HIGH;
END IF;
WHEN JSTK_Y_HIGH =>
-- Receive Y-axis high byte (bits 9:8) and assemble complete Y value
IF s_axis_tvalid = '1' THEN
-- Combine: high_byte(1:0) & low_byte(7:0) = 10-bit Y position
jstk_y <= s_axis_tdata(1 DOWNTO 0) & rx_cache;
rx_state <= BUTTONS; -- Move to button reception
END IF;
WHEN JSTK_Y_HIGH =>
IF s_axis_tvalid = '1' THEN
jstk_y <= s_axis_tdata(1 DOWNTO 0) & rx_cache;
rx_state <= BUTTONS;
END IF;
WHEN BUTTONS =>
-- Receive button states byte
IF s_axis_tvalid = '1' THEN
btn_jstk <= s_axis_tdata(0); -- Joystick button (bit 0)
btn_trigger <= s_axis_tdata(1); -- Trigger button (bit 1)
rx_state <= JSTK_X_LOW; -- Return to start for next packet
END IF;
WHEN BUTTONS =>
IF s_axis_tvalid = '1' THEN
btn_jstk <= s_axis_tdata(0);
btn_trigger <= s_axis_tdata(1);
rx_state <= JSTK_X_LOW;
END IF;
END CASE;
END IF;
END IF;
END PROCESS RX;
END CASE;
END IF;
END IF;
END PROCESS RX;
END ARCHITECTURE;

View File

@@ -1,20 +1,27 @@
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
-- Entity: effect_selector
-- Purpose: Routes joystick input to different audio control parameters based on effect mode
-- Acts as a multiplexer/router for joystick control signals
ENTITY effect_selector IS
GENERIC (
JOYSTICK_LENGHT : INTEGER := 10
JOYSTICK_LENGHT : INTEGER := 10 -- Width of joystick position data (10-bit = 0-1023 range)
);
PORT (
aclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
-- Clock and reset signals
aclk : IN STD_LOGIC; -- Main clock input
aresetn : IN STD_LOGIC; -- Active-low asynchronous reset
effect : IN STD_LOGIC;
jstck_x : IN STD_LOGIC_VECTOR(JOYSTICK_LENGHT - 1 DOWNTO 0);
jstck_y : IN STD_LOGIC_VECTOR(JOYSTICK_LENGHT - 1 DOWNTO 0);
volume : OUT STD_LOGIC_VECTOR(JOYSTICK_LENGHT - 1 DOWNTO 0);
balance : OUT STD_LOGIC_VECTOR(JOYSTICK_LENGHT - 1 DOWNTO 0);
lfo_period : OUT STD_LOGIC_VECTOR(JOYSTICK_LENGHT - 1 DOWNTO 0)
-- Control and input signals
effect : IN STD_LOGIC; -- Effect mode selector (0=volume/balance mode, 1=LFO/balance mode)
jstck_x : IN STD_LOGIC_VECTOR(JOYSTICK_LENGHT - 1 DOWNTO 0); -- X-axis joystick position
jstck_y : IN STD_LOGIC_VECTOR(JOYSTICK_LENGHT - 1 DOWNTO 0); -- Y-axis joystick position
-- Output control parameters
volume : OUT STD_LOGIC_VECTOR(JOYSTICK_LENGHT - 1 DOWNTO 0); -- Volume control output
balance : OUT STD_LOGIC_VECTOR(JOYSTICK_LENGHT - 1 DOWNTO 0); -- Balance control output
lfo_period : OUT STD_LOGIC_VECTOR(JOYSTICK_LENGHT - 1 DOWNTO 0) -- LFO period control output
);
END effect_selector;
@@ -22,26 +29,38 @@ ARCHITECTURE Behavioral OF effect_selector IS
BEGIN
-- Main control logic process
-- Routes joystick axes to appropriate audio control parameters based on selected mode
PROCESS (aclk)
BEGIN
IF rising_edge(aclk) THEN
IF aresetn = '0' THEN
volume <= (OTHERS => '0');
balance <= (OTHERS => '0');
lfo_period <= (OTHERS => '0');
-- Reset all outputs to zero (minimum values)
volume <= (OTHERS => '0'); -- Minimum volume
balance <= (OTHERS => '0'); -- Full left balance
lfo_period <= (OTHERS => '0'); -- Minimum LFO period
ELSE
-- Normal operation: Route joystick inputs based on effect mode
-- X-axis always controls balance regardless of mode
-- This provides consistent left/right audio balance control
balance <= jstck_x;
-- Y-axis control depends on selected effect mode
IF effect = '1' THEN
-- LFO control
-- LFO Mode: Y-axis controls Low Frequency Oscillator period
-- Used for tremolo, vibrato, or other modulation effects
lfo_period <= jstck_y;
-- Volume remains at last set value (not updated in LFO mode)
ELSE
-- volume/balance control
-- Volume/Balance Mode: Y-axis controls overall volume level
-- Traditional audio mixer control mode
volume <= jstck_y;
-- LFO period remains at last set value (not updated in volume mode)
END IF;

View File

@@ -1,37 +1,64 @@
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
-- Entity: led_controller
-- Purpose: Controls RGB LED indicators based on audio system status
-- Provides visual feedback for mute and filter enable states
ENTITY led_controller IS
GENERIC (
LED_WIDTH : POSITIVE := 8
);
PORT (
mute_enable : IN STD_LOGIC;
filter_enable : IN STD_LOGIC;
GENERIC (
LED_WIDTH : POSITIVE := 8 -- Width of LED intensity control (8-bit = 0-255 intensity levels)
);
PORT (
-- Control input signals
mute_enable : IN STD_LOGIC; -- Mute status (1=audio muted, 0=audio active)
filter_enable : IN STD_LOGIC; -- Filter status (1=filter active, 0=filter bypassed)
led_r : OUT STD_LOGIC_VECTOR(LED_WIDTH - 1 DOWNTO 0);
led_g : OUT STD_LOGIC_VECTOR(LED_WIDTH - 1 DOWNTO 0);
led_b : OUT STD_LOGIC_VECTOR(LED_WIDTH - 1 DOWNTO 0)
);
-- RGB LED output signals (intensity control)
led_r : OUT STD_LOGIC_VECTOR(LED_WIDTH - 1 DOWNTO 0); -- Red LED intensity (0-255)
led_g : OUT STD_LOGIC_VECTOR(LED_WIDTH - 1 DOWNTO 0); -- Green LED intensity (0-255)
led_b : OUT STD_LOGIC_VECTOR(LED_WIDTH - 1 DOWNTO 0) -- Blue LED intensity (0-255)
);
END led_controller;
ARCHITECTURE Behavioral OF led_controller IS
-- constant for "ON" and "OFF"
CONSTANT ALL_ON : STD_LOGIC_VECTOR(LED_WIDTH - 1 DOWNTO 0) := (OTHERS => '1');
CONSTANT ALL_OFF : STD_LOGIC_VECTOR(LED_WIDTH - 1 DOWNTO 0) := (OTHERS => '0');
-- Constants for LED intensity levels
CONSTANT ALL_ON : STD_LOGIC_VECTOR(LED_WIDTH - 1 DOWNTO 0) := (OTHERS => '1'); -- Maximum brightness (255)
CONSTANT ALL_OFF : STD_LOGIC_VECTOR(LED_WIDTH - 1 DOWNTO 0) := (OTHERS => '0'); -- LED off (0)
BEGIN
-- If mute_enable = '1' Red LEDs on, others off
-- Else if filter_enable='1' Blue LEDs on, others off
-- Else Green LEDs on, others off
-- LED Status Indication Logic:
-- Priority-based color coding for system status
--
-- Color Scheme:
-- RED = Mute active (highest priority - audio completely off)
-- BLUE = Filter active (medium priority - audio processing enabled)
-- GREEN = Normal operation (lowest priority - audio pass-through)
led_r <= ALL_ON WHEN mute_enable = '1' ELSE
ALL_OFF;
led_b <= ALL_ON WHEN (mute_enable = '0' AND filter_enable = '1') ELSE
ALL_OFF;
led_g <= ALL_ON WHEN (mute_enable = '0' AND filter_enable = '0') ELSE
ALL_OFF;
-- Red LED Control: Indicates mute status
-- Turn on red LED when audio is muted, regardless of filter state
led_r <= ALL_ON WHEN mute_enable = '1' ELSE
ALL_OFF;
-- Blue LED Control: Indicates filter activation
-- Turn on blue LED when filter is active AND audio is not muted
-- Mute has higher priority than filter indication
led_b <= ALL_ON WHEN (mute_enable = '0' AND filter_enable = '1') ELSE
ALL_OFF;
-- Green LED Control: Indicates normal operation
-- Turn on green LED when audio is active (not muted) AND filter is disabled
-- This represents the default "audio pass-through" state
led_g <= ALL_ON WHEN (mute_enable = '0' AND filter_enable = '0') ELSE
ALL_OFF;
-- Truth Table for LED States:
-- mute_enable | filter_enable | RED | GREEN | BLUE | Status
-- ------------|---------------|-----|-------|------|------------------
-- 0 | 0 | 0 | 1 | 0 | Normal (Green)
-- 0 | 1 | 0 | 0 | 1 | Filter On (Blue)
-- 1 | 0 | 1 | 0 | 0 | Muted (Red)
-- 1 | 1 | 1 | 0 | 0 | Muted (Red)
END Behavioral;

View File

@@ -2,121 +2,201 @@ LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.NUMERIC_STD.ALL;
-- Entity: led_level_controller
-- Purpose: Audio level meter using LEDs to display real-time audio amplitude
-- Processes stereo audio samples and drives a bar graph LED display
-- Provides visual feedback of audio signal strength for both channels combined
ENTITY led_level_controller IS
GENERIC (
NUM_LEDS : POSITIVE := 16;
CHANNEL_LENGHT : POSITIVE := 24;
refresh_time_ms : POSITIVE := 1;
clock_period_ns : POSITIVE := 10
NUM_LEDS : POSITIVE := 16; -- Number of LEDs in the level meter display
CHANNEL_LENGHT : POSITIVE := 24; -- Width of audio data (24-bit audio samples)
refresh_time_ms : POSITIVE := 1; -- LED refresh rate in milliseconds (1ms = 1kHz update rate)
clock_period_ns : POSITIVE := 10 -- System clock period in nanoseconds (10ns = 100MHz)
);
PORT (
-- Clock and reset signals
aclk : IN STD_LOGIC; -- Main clock input
aresetn : IN STD_LOGIC; -- Active-low asynchronous reset
aclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
led : OUT STD_LOGIC_VECTOR(NUM_LEDS - 1 DOWNTO 0);
s_axis_tvalid : IN STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(CHANNEL_LENGHT - 1 DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC
-- LED output array (bar graph display)
led : OUT STD_LOGIC_VECTOR(NUM_LEDS - 1 DOWNTO 0); -- LED control signals (1=on, 0=off)
-- AXI4-Stream Slave Interface (Audio Input)
s_axis_tvalid : IN STD_LOGIC; -- Input data valid signal
s_axis_tdata : IN STD_LOGIC_VECTOR(CHANNEL_LENGHT - 1 DOWNTO 0); -- Audio sample input
s_axis_tlast : IN STD_LOGIC; -- Channel indicator (0=right, 1=left)
s_axis_tready : OUT STD_LOGIC -- Always ready to accept data
);
END led_level_controller;
ARCHITECTURE Behavioral OF led_level_controller IS
-- Calculate number of clock cycles for LED refresh timing
-- Example: 1ms refresh at 100MHz = (1*1,000,000)/10 = 100,000 cycles
CONSTANT REFRESH_CYCLES : NATURAL := (refresh_time_ms * 1_000_000) / clock_period_ns;
SIGNAL volume_value : signed(CHANNEL_LENGHT - 1 DOWNTO 0) := (OTHERS => '0');
SIGNAL abs_audio_left : unsigned(CHANNEL_LENGHT - 2 DOWNTO 0) := (OTHERS => '0');
SIGNAL abs_audio_right : unsigned(CHANNEL_LENGHT - 2 DOWNTO 0) := (OTHERS => '0');
SIGNAL leds_int : STD_LOGIC_VECTOR(NUM_LEDS - 1 DOWNTO 0) := (OTHERS => '0');
SIGNAL led_update : STD_LOGIC := '0';
SIGNAL refresh_counter : NATURAL RANGE 0 TO REFRESH_CYCLES - 1 := 0;
-- Audio processing signals
SIGNAL volume_value : signed(CHANNEL_LENGHT - 1 DOWNTO 0) := (OTHERS => '0'); -- Current audio sample (signed)
SIGNAL abs_audio_left : unsigned(CHANNEL_LENGHT - 2 DOWNTO 0) := (OTHERS => '0'); -- Absolute value of left channel
SIGNAL abs_audio_right : unsigned(CHANNEL_LENGHT - 2 DOWNTO 0) := (OTHERS => '0'); -- Absolute value of right channel
-- LED control signals
SIGNAL leds_int : STD_LOGIC_VECTOR(NUM_LEDS - 1 DOWNTO 0) := (OTHERS => '0'); -- Internal LED state
SIGNAL led_update : STD_LOGIC := '0'; -- Trigger for LED refresh
-- Timing control
SIGNAL refresh_counter : NATURAL RANGE 0 TO REFRESH_CYCLES - 1 := 0; -- Counter for refresh timing
BEGIN
led <= leds_int;
s_axis_tready <= '1';
-- Registering the absolute audio value
-- Connect internal signals to output ports
led <= leds_int; -- Drive external LEDs with internal state
s_axis_tready <= '1'; -- Always ready to accept audio data (no backpressure)
-- Audio sample processing and absolute value calculation
-- Converts signed audio samples to unsigned absolute values for level detection
PROCESS (aclk)
VARIABLE sdata_signed : signed(CHANNEL_LENGHT - 1 DOWNTO 0);
VARIABLE abs_value : unsigned(CHANNEL_LENGHT - 1 DOWNTO 0);
VARIABLE sdata_signed : signed(CHANNEL_LENGHT - 1 DOWNTO 0); -- Temporary signed audio value
VARIABLE abs_value : unsigned(CHANNEL_LENGHT - 1 DOWNTO 0); -- Temporary absolute value
BEGIN
IF rising_edge(aclk) THEN
IF aresetn = '0' THEN
volume_value <= (OTHERS => '0');
abs_audio_left <= (OTHERS => '0');
abs_audio_right <= (OTHERS => '0');
-- Reset: Clear all audio processing signals
volume_value <= (OTHERS => '0'); -- Clear current sample
abs_audio_left <= (OTHERS => '0'); -- Clear left channel level
abs_audio_right <= (OTHERS => '0'); -- Clear right channel level
ELSIF s_axis_tvalid = '1' THEN
sdata_signed := signed(s_axis_tdata);
volume_value <= sdata_signed;
-- Absolute value calculation
-- Process new audio sample when valid data is available
sdata_signed := signed(s_axis_tdata); -- Convert input to signed format
volume_value <= sdata_signed; -- Store current sample
-- Absolute value calculation for amplitude detection
-- Handle two's complement signed numbers correctly
IF sdata_signed(CHANNEL_LENGHT - 1) = '1' THEN
-- Negative number: Take two's complement to get absolute value
abs_value := unsigned(-sdata_signed);
ELSE
-- Positive number: Direct conversion to unsigned
abs_value := unsigned(sdata_signed);
END IF;
-- Assign to the correct channel
IF s_axis_tlast = '1' THEN -- Left channel
-- Channel assignment based on tlast signal
-- Note: Channel assignment appears reversed from typical convention
IF s_axis_tlast = '1' THEN
-- tlast = '1': Assign to left channel
abs_audio_left <= abs_value(CHANNEL_LENGHT - 2 DOWNTO 0);
ELSE -- Right channel
ELSE
-- tlast = '0': Assign to right channel
abs_audio_right <= abs_value(CHANNEL_LENGHT - 2 DOWNTO 0);
END IF;
END IF;
END IF;
END PROCESS;
-- Refresh counter
-- LED refresh timing control
-- Generates periodic update signals for smooth LED display updates
PROCESS (aclk)
BEGIN
IF rising_edge(aclk) THEN
IF aresetn = '0' THEN
refresh_counter <= 0;
led_update <= '0';
-- Reset timing control
refresh_counter <= 0; -- Clear refresh counter
led_update <= '0'; -- Clear update trigger
ELSIF refresh_counter = REFRESH_CYCLES - 1 THEN
refresh_counter <= 0;
led_update <= '1';
-- End of refresh period: Trigger LED update
refresh_counter <= 0; -- Reset counter for next period
led_update <= '1'; -- Set update trigger
ELSE
refresh_counter <= refresh_counter + 1;
led_update <= '0';
-- Continue counting refresh period
refresh_counter <= refresh_counter + 1; -- Increment counter
led_update <= '0'; -- Clear update trigger
END IF;
END IF;
END PROCESS;
-- Linear scaling and LED update
-- LED level calculation and bar graph generation
-- Combines left and right channel levels and maps to LED array
PROCESS (aclk)
VARIABLE leds_on : NATURAL RANGE 0 TO NUM_LEDS;
VARIABLE temp_led_level : INTEGER RANGE 0 TO NUM_LEDS;
VARIABLE abs_audio_sum : unsigned(CHANNEL_LENGHT - 1 DOWNTO 0);
VARIABLE leds_on : NATURAL RANGE 0 TO NUM_LEDS; -- Number of LEDs to illuminate
VARIABLE temp_led_level : INTEGER RANGE 0 TO NUM_LEDS; -- Calculated LED level
VARIABLE abs_audio_sum : unsigned(CHANNEL_LENGHT - 1 DOWNTO 0); -- Combined channel amplitude
BEGIN
IF rising_edge(aclk) THEN
IF aresetn = '0' THEN
-- Reset: Turn off all LEDs
leds_int <= (OTHERS => '0');
ELSIF led_update = '1' THEN
-- Update LED display when refresh trigger is active
-- Combine left and right channel amplitudes
-- Resize both channels to full width before addition to prevent overflow
abs_audio_sum := resize(abs_audio_left, CHANNEL_LENGHT) + resize(abs_audio_right, CHANNEL_LENGHT);
-- Level calculation with automatic sensitivity scaling
IF (abs_audio_left = 0 AND abs_audio_right = 0) THEN
-- Silence: No LEDs illuminated
temp_led_level := 0;
ELSE
-- Automatic scaling
-- Sensitivity can be adjusted by changing the shift constant
-- Audio present: Calculate LED level using logarithmic-like scaling
-- Right shift by (CHANNEL_LENGHT - 4) provides automatic sensitivity adjustment
-- The "1 +" ensures at least one LED is on when audio is present
-- Shift amount determines sensitivity: larger shift = less sensitive
temp_led_level := 1 + to_integer(shift_right(abs_audio_sum, CHANNEL_LENGHT - 4));
END IF;
-- Limit to the maximum number of LEDs
-- Limit LED level to available LEDs (prevent array overflow)
IF temp_led_level > NUM_LEDS THEN
leds_on := NUM_LEDS;
leds_on := NUM_LEDS; -- Cap at maximum LEDs
ELSE
leds_on := temp_led_level;
leds_on := temp_led_level; -- Use calculated level
END IF;
-- Update the LEDs
leds_int <= (OTHERS => '0');
-- Generate bar graph pattern: illuminate LEDs from 0 to (leds_on-1)
-- This creates a classic audio level meter appearance
leds_int <= (OTHERS => '0'); -- Start with all LEDs off
IF leds_on > 0 THEN
-- Turn on LEDs from index 0 up to (leds_on-1)
-- Creates solid bar from bottom to current level
leds_int(leds_on - 1 DOWNTO 0) <= (OTHERS => '1');
END IF;
END IF;
END IF;
END PROCESS;
-- LED Level Meter Operation Summary:
-- 1. Continuously samples stereo audio data
-- 2. Calculates absolute value (amplitude) for each channel
-- 3. Combines left and right channels for total signal strength
-- 4. Updates LED display at regular intervals (refresh_time_ms)
-- 5. Maps audio amplitude to number of illuminated LEDs
-- 6. Creates bar graph visualization with automatic sensitivity scaling
--
-- Leds Behavior:
-- - No audio: All LEDs off
-- - Low audio: Few LEDs illuminated (bottom of bar)
-- - High audio: Many LEDs illuminated (full bar)
-- - Overload: All LEDs illuminated (maximum indication)
END Behavioral;

View File

@@ -2,153 +2,199 @@ LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE ieee.numeric_std.ALL;
-- Entity: moving_average_filter
-- Purpose: Implements a finite impulse response (FIR) low-pass filter using moving average
-- Maintains separate circular buffers for left and right audio channels
-- Filter order is configurable as 2^(FILTER_ORDER_POWER) samples
ENTITY moving_average_filter IS
GENERIC (
-- Filter order expressed as 2^(FILTER_ORDER_POWER)
FILTER_ORDER_POWER : INTEGER := 5;
GENERIC (
-- Filter order expressed as 2^(FILTER_ORDER_POWER)
-- Example: FILTER_ORDER_POWER = 5 means 32-sample moving average
FILTER_ORDER_POWER : INTEGER := 5;
TDATA_WIDTH : POSITIVE := 24
);
PORT (
aclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
TDATA_WIDTH : POSITIVE := 24 -- Width of audio data bus (24-bit audio samples)
);
PORT (
-- Clock and reset signals
aclk : IN STD_LOGIC; -- Main clock input
aresetn : IN STD_LOGIC; -- Active-low asynchronous reset
s_axis_tvalid : IN STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
-- AXI4-Stream Slave Interface (Audio Input)
s_axis_tvalid : IN STD_LOGIC; -- Input data valid signal
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0); -- Audio sample input
s_axis_tlast : IN STD_LOGIC; -- Channel indicator (0=left, 1=right)
s_axis_tready : OUT STD_LOGIC; -- Ready to accept input data
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC
);
-- AXI4-Stream Master Interface (Audio Output)
m_axis_tvalid : OUT STD_LOGIC; -- Output data valid signal
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0); -- Filtered audio sample output
m_axis_tlast : OUT STD_LOGIC; -- Channel indicator passthrough
m_axis_tready : IN STD_LOGIC -- Downstream ready signal
);
END moving_average_filter;
ARCHITECTURE Behavioral OF moving_average_filter IS
CONSTANT FILTER_ORDER : INTEGER := 2 ** FILTER_ORDER_POWER;
-- Calculate actual filter order from power-of-2 representation
CONSTANT FILTER_ORDER : INTEGER := 2 ** FILTER_ORDER_POWER;
TYPE sample_array IS ARRAY (0 TO FILTER_ORDER - 1) OF signed(TDATA_WIDTH - 1 DOWNTO 0);
-- Array type for storing audio samples in circular buffers
TYPE sample_array IS ARRAY (0 TO FILTER_ORDER - 1) OF signed(TDATA_WIDTH - 1 DOWNTO 0);
-- RX
SIGNAL samples_rx : sample_array := (OTHERS => (OTHERS => '0'));
SIGNAL sum_rx : signed(TDATA_WIDTH + FILTER_ORDER_POWER - 1 DOWNTO 0) := (OTHERS => '0');
SIGNAL wr_ptr_rx : INTEGER RANGE 0 TO FILTER_ORDER - 1 := 0;
-- Right channel (RX) processing signals
SIGNAL samples_rx : sample_array := (OTHERS => (OTHERS => '0')); -- Circular buffer for right channel samples
SIGNAL sum_rx : signed(TDATA_WIDTH + FILTER_ORDER_POWER - 1 DOWNTO 0) := (OTHERS => '0'); -- Running sum of right channel samples
SIGNAL wr_ptr_rx : INTEGER RANGE 0 TO FILTER_ORDER - 1 := 0; -- Write pointer for right channel buffer
-- LX
SIGNAL samples_lx : sample_array := (OTHERS => (OTHERS => '0'));
SIGNAL sum_lx : signed(TDATA_WIDTH + FILTER_ORDER_POWER - 1 DOWNTO 0) := (OTHERS => '0');
SIGNAL wr_ptr_lx : INTEGER RANGE 0 TO FILTER_ORDER - 1 := 0;
-- Left channel (LX) processing signals
SIGNAL samples_lx : sample_array := (OTHERS => (OTHERS => '0')); -- Circular buffer for left channel samples
SIGNAL sum_lx : signed(TDATA_WIDTH + FILTER_ORDER_POWER - 1 DOWNTO 0) := (OTHERS => '0'); -- Running sum of left channel samples
SIGNAL wr_ptr_lx : INTEGER RANGE 0 TO FILTER_ORDER - 1 := 0; -- Write pointer for left channel buffer
-- Trigger signal to indicate when to output data
SIGNAL trigger : STD_LOGIC := '0';
-- Output signals
SIGNAL s_axis_tready_int : STD_LOGIC := '0';
SIGNAL s_axis_tlast_reg : STD_LOGIC := '0';
SIGNAL m_axis_tvalid_int : STD_LOGIC := '0';
-- Control and interface signals
SIGNAL trigger : STD_LOGIC := '0'; -- Trigger signal to indicate when to output filtered data
SIGNAL s_axis_tready_int : STD_LOGIC := '0'; -- Internal ready signal for input interface
SIGNAL s_axis_tlast_reg : STD_LOGIC := '0'; -- Registered version of tlast for output synchronization
SIGNAL m_axis_tvalid_int : STD_LOGIC := '0'; -- Internal valid signal for output interface
BEGIN
-- Assigning the output signals
m_axis_tvalid <= m_axis_tvalid_int;
s_axis_tready <= s_axis_tready_int;
-- Connect internal signals to output ports
m_axis_tvalid <= m_axis_tvalid_int;
s_axis_tready <= s_axis_tready_int;
PROCESS (aclk)
BEGIN
-- Main processing logic - synchronous to clock
PROCESS (aclk)
BEGIN
IF rising_edge(aclk) THEN
IF rising_edge(aclk) THEN
IF aresetn = '0' THEN
samples_rx <= (OTHERS => (OTHERS => '0'));
samples_lx <= (OTHERS => (OTHERS => '0'));
sum_rx <= (OTHERS => '0');
sum_lx <= (OTHERS => '0');
wr_ptr_rx <= 0;
wr_ptr_lx <= 0;
IF aresetn = '0' THEN
-- Reset all filter state and control signals
samples_rx <= (OTHERS => (OTHERS => '0')); -- Clear right channel sample buffer
samples_lx <= (OTHERS => (OTHERS => '0')); -- Clear left channel sample buffer
sum_rx <= (OTHERS => '0'); -- Clear right channel running sum
sum_lx <= (OTHERS => '0'); -- Clear left channel running sum
wr_ptr_rx <= 0; -- Reset right channel write pointer
wr_ptr_lx <= 0; -- Reset left channel write pointer
s_axis_tlast_reg <= '0';
s_axis_tready_int <= '0';
m_axis_tvalid_int <= '0';
m_axis_tlast <= '0';
-- Reset AXI4-Stream interface signals
s_axis_tlast_reg <= '0'; -- Clear registered tlast
s_axis_tready_int <= '0'; -- Not ready during reset
m_axis_tvalid_int <= '0'; -- No valid output during reset
m_axis_tlast <= '0'; -- Clear output tlast
ELSE
-- Clear valid flag when master interface is ready
IF m_axis_tready = '1' THEN
m_axis_tvalid_int <= '0';
END IF;
ELSE
-- Normal operation
-- Data output logic
IF trigger = '1' AND (m_axis_tvalid_int = '0' OR m_axis_tready = '1') THEN
IF s_axis_tlast_reg = '1' THEN
m_axis_tdata <= STD_LOGIC_VECTOR(
resize(
shift_right(
sum_rx,
FILTER_ORDER_POWER
),
m_axis_tdata'length
)
);
-- Output handshake management:
-- Clear valid flag when downstream accepts data
IF m_axis_tready = '1' THEN
m_axis_tvalid_int <= '0';
END IF;
ELSE
m_axis_tdata <= STD_LOGIC_VECTOR(
resize(
shift_right(
sum_lx,
FILTER_ORDER_POWER
),
m_axis_tdata'length
)
);
-- Data output logic:
-- Output filtered data when trigger is set AND output interface is available
IF trigger = '1' AND (m_axis_tvalid_int = '0' OR m_axis_tready = '1') THEN
END IF;
-- Select which channel's filtered data to output based on registered tlast
IF s_axis_tlast_reg = '1' THEN
-- Right channel: Output averaged right channel data
-- Divide sum by filter order using right shift (efficient division by power of 2)
m_axis_tdata <= STD_LOGIC_VECTOR(
resize(
shift_right(
sum_rx, -- Right channel running sum
FILTER_ORDER_POWER -- Divide by 2^FILTER_ORDER_POWER
),
m_axis_tdata'length -- Resize to output width
)
);
m_axis_tlast <= s_axis_tlast_reg;
ELSE
-- Left channel: Output averaged left channel data
-- Divide sum by filter order using right shift (efficient division by power of 2)
m_axis_tdata <= STD_LOGIC_VECTOR(
resize(
shift_right(
sum_lx, -- Left channel running sum
FILTER_ORDER_POWER -- Divide by 2^FILTER_ORDER_POWER
),
m_axis_tdata'length -- Resize to output width
)
);
m_axis_tvalid_int <= '1';
trigger <= '0';
END IF;
END IF;
-- Data input logic
IF s_axis_tvalid = '1' AND s_axis_tready_int = '1' THEN
IF s_axis_tlast = '1' THEN
-- Right channel
-- Circular buffer overwrite oldest saple with the new one from next clk cycle
samples_rx(wr_ptr_rx) <= signed(s_axis_tdata);
-- Set output control signals
m_axis_tlast <= s_axis_tlast_reg; -- Pass through the registered channel indicator
m_axis_tvalid_int <= '1'; -- Mark output as valid
trigger <= '0'; -- Clear trigger - data has been output
-- Update the write pointer
wr_ptr_rx <= (wr_ptr_rx + 1) MOD FILTER_ORDER;
END IF;
-- Update the sum_rx removing the oldest sample and adding the new one
sum_rx <= sum_rx - samples_rx(wr_ptr_rx) + signed(s_axis_tdata);
-- Data input logic:
-- Process new input samples when both valid and ready are asserted
IF s_axis_tvalid = '1' AND s_axis_tready_int = '1' THEN
s_axis_tlast_reg <= s_axis_tlast;
ELSE
-- Left channel
-- Circular buffer overwrite oldest saple with the new one from next clk cycle
samples_lx(wr_ptr_lx) <= signed(s_axis_tdata);
-- Channel identification and processing based on tlast signal
IF s_axis_tlast = '1' THEN
-- Right channel processing (tlast = '1')
-- Update the write pointer
wr_ptr_lx <= (wr_ptr_lx + 1) MOD FILTER_ORDER;
-- Store new sample in circular buffer, overwriting oldest sample
samples_rx(wr_ptr_rx) <= signed(s_axis_tdata);
-- Update the sum_rx removing the oldest sample and adding the new one
sum_lx <= sum_lx - samples_lx(wr_ptr_lx) + signed(s_axis_tdata);
-- Update write pointer with wraparound (circular buffer behavior)
wr_ptr_rx <= (wr_ptr_rx + 1) MOD FILTER_ORDER;
s_axis_tlast_reg <= s_axis_tlast;
END IF;
-- Update running sum using sliding window technique:
-- Remove the oldest sample (about to be overwritten) and add the new sample
-- This maintains the sum of the most recent FILTER_ORDER samples
sum_rx <= sum_rx - samples_rx(wr_ptr_rx) + signed(s_axis_tdata);
trigger <= '1';
-- Register tlast for output synchronization
s_axis_tlast_reg <= s_axis_tlast;
END IF;
ELSE
-- Left channel processing (tlast = '0')
s_axis_tready_int <= m_axis_tready OR NOT m_axis_tvalid_int;
-- Store new sample in circular buffer, overwriting oldest sample
samples_lx(wr_ptr_lx) <= signed(s_axis_tdata);
END IF;
-- Update write pointer with wraparound (circular buffer behavior)
wr_ptr_lx <= (wr_ptr_lx + 1) MOD FILTER_ORDER;
END IF;
-- Update running sum using sliding window technique:
-- Remove the oldest sample (about to be overwritten) and add the new sample
-- This maintains the sum of the most recent FILTER_ORDER samples
sum_lx <= sum_lx - samples_lx(wr_ptr_lx) + signed(s_axis_tdata);
END PROCESS;
-- Register tlast for output synchronization
s_axis_tlast_reg <= s_axis_tlast;
END IF;
-- Set trigger to indicate that new filtered data is ready for output
trigger <= '1';
END IF;
-- Input ready logic:
-- Ready to accept new input when downstream is ready OR no valid output pending
-- This implements proper AXI4-Stream backpressure handling
s_axis_tready_int <= m_axis_tready OR NOT m_axis_tvalid_int;
END IF;
END IF;
END PROCESS;
-- Filter Operation Summary:
-- 1. Maintains separate circular buffers for left and right audio channels
-- 2. Uses running sum technique for efficient moving average calculation
-- 3. Each new sample: removes oldest from sum, adds newest to sum
-- 4. Output = sum / FILTER_ORDER (using efficient bit shift division)
-- 5. Provides low-pass filtering with configurable filter order
END Behavioral;

View File

@@ -2,135 +2,167 @@ LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE ieee.numeric_std.ALL;
-- Entity: moving_average_filter_en
-- Purpose: Switchable audio filter that can be enabled or disabled at runtime
-- When enabled: applies moving average low-pass filtering
-- When disabled: passes audio through unchanged (all-pass filter)
-- This allows real-time comparison between filtered and unfiltered audio
ENTITY moving_average_filter_en IS
GENERIC (
-- Filter order expressed as 2^(FILTER_ORDER_POWER)
FILTER_ORDER_POWER : INTEGER := 5;
GENERIC (
-- Filter order expressed as 2^(FILTER_ORDER_POWER)
-- Example: FILTER_ORDER_POWER = 5 means filter order = 32 samples
FILTER_ORDER_POWER : INTEGER := 5;
TDATA_WIDTH : POSITIVE := 24
);
PORT (
aclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
TDATA_WIDTH : POSITIVE := 24 -- Width of audio data bus (24-bit audio samples)
);
PORT (
-- Clock and reset signals
aclk : IN STD_LOGIC; -- Main clock input
aresetn : IN STD_LOGIC; -- Active-low asynchronous reset
s_axis_tvalid : IN STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
-- AXI4-Stream Slave Interface (Audio Input)
s_axis_tvalid : IN STD_LOGIC; -- Input data valid signal
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0); -- Audio sample input
s_axis_tlast : IN STD_LOGIC; -- Channel indicator (0=left, 1=right)
s_axis_tready : OUT STD_LOGIC; -- Ready to accept input data
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC;
-- AXI4-Stream Master Interface (Audio Output)
m_axis_tvalid : OUT STD_LOGIC; -- Output data valid signal
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0); -- Audio sample output (filtered or unfiltered)
m_axis_tlast : OUT STD_LOGIC; -- Channel indicator passthrough
m_axis_tready : IN STD_LOGIC; -- Downstream ready signal
enable_filter : IN STD_LOGIC
);
-- Filter control input
enable_filter : IN STD_LOGIC -- Filter enable control (1=moving average filter, 0=all-pass filter)
);
END moving_average_filter_en;
ARCHITECTURE Behavioral OF moving_average_filter_en IS
-- Component declarations
COMPONENT all_pass_filter IS
GENERIC (
TDATA_WIDTH : POSITIVE := 24
);
PORT (
aclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
-- Component declaration for all-pass filter
-- This filter passes audio unchanged but maintains the same latency as the moving average filter
COMPONENT all_pass_filter IS
GENERIC (
TDATA_WIDTH : POSITIVE := 24
);
PORT (
aclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
s_axis_tvalid : IN STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
s_axis_tvalid : IN STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC
);
END COMPONENT;
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC
);
END COMPONENT;
COMPONENT moving_average_filter IS
GENERIC (
FILTER_ORDER_POWER : INTEGER := 5;
TDATA_WIDTH : POSITIVE := 24
);
PORT (
aclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
-- Component declaration for moving average filter
-- This filter applies low-pass filtering by averaging multiple audio samples
COMPONENT moving_average_filter IS
GENERIC (
FILTER_ORDER_POWER : INTEGER := 5;
TDATA_WIDTH : POSITIVE := 24
);
PORT (
aclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
s_axis_tvalid : IN STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
s_axis_tvalid : IN STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC
);
END COMPONENT;
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC
);
END COMPONENT;
-- Internal signals for the all-pass filter
SIGNAL all_pass_m_tvalid : STD_LOGIC;
SIGNAL all_pass_m_tdata : STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
SIGNAL all_pass_m_tlast : STD_LOGIC;
SIGNAL all_pass_s_tready : STD_LOGIC;
-- Internal signals for the all-pass filter path
-- These signals carry data when filtering is disabled
SIGNAL all_pass_m_tvalid : STD_LOGIC; -- All-pass filter output valid
SIGNAL all_pass_m_tdata : STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0); -- All-pass filter output data
SIGNAL all_pass_m_tlast : STD_LOGIC; -- All-pass filter output tlast
SIGNAL all_pass_s_tready : STD_LOGIC; -- All-pass filter input ready
-- Internal signals for the moving average filter
SIGNAL moving_avg_m_tvalid : STD_LOGIC;
SIGNAL moving_avg_m_tdata : STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
SIGNAL moving_avg_m_tlast : STD_LOGIC;
SIGNAL moving_avg_s_tready : STD_LOGIC;
-- Internal signals for the moving average filter path
-- These signals carry data when filtering is enabled
SIGNAL moving_avg_m_tvalid : STD_LOGIC; -- Moving average filter output valid
SIGNAL moving_avg_m_tdata : STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0); -- Moving average filter output data
SIGNAL moving_avg_m_tlast : STD_LOGIC; -- Moving average filter output tlast
SIGNAL moving_avg_s_tready : STD_LOGIC; -- Moving average filter input ready
BEGIN
-- Instantiate the all-pass filter
all_pass_inst : all_pass_filter
GENERIC MAP(
TDATA_WIDTH => TDATA_WIDTH
)
PORT MAP(
aclk => aclk,
aresetn => aresetn,
-- Instantiate the all-pass filter (bypass path)
-- This provides unfiltered audio with matched latency for seamless switching
all_pass_inst : all_pass_filter
GENERIC MAP(
TDATA_WIDTH => TDATA_WIDTH
)
PORT MAP(
aclk => aclk,
aresetn => aresetn,
s_axis_tvalid => s_axis_tvalid,
s_axis_tdata => s_axis_tdata,
s_axis_tlast => s_axis_tlast,
s_axis_tready => all_pass_s_tready,
-- Connect input directly to all-pass filter
s_axis_tvalid => s_axis_tvalid,
s_axis_tdata => s_axis_tdata,
s_axis_tlast => s_axis_tlast,
s_axis_tready => all_pass_s_tready,
m_axis_tvalid => all_pass_m_tvalid,
m_axis_tdata => all_pass_m_tdata,
m_axis_tlast => all_pass_m_tlast,
m_axis_tready => m_axis_tready
);
-- All-pass filter outputs (used when enable_filter = '0')
m_axis_tvalid => all_pass_m_tvalid,
m_axis_tdata => all_pass_m_tdata,
m_axis_tlast => all_pass_m_tlast,
m_axis_tready => m_axis_tready
);
-- Instantiate the moving average filter
moving_avg_inst : moving_average_filter
GENERIC MAP(
FILTER_ORDER_POWER => FILTER_ORDER_POWER,
TDATA_WIDTH => TDATA_WIDTH
)
PORT MAP(
aclk => aclk,
aresetn => aresetn,
-- Instantiate the moving average filter (filtering path)
-- This provides low-pass filtered audio for noise reduction
moving_avg_inst : moving_average_filter
GENERIC MAP(
FILTER_ORDER_POWER => FILTER_ORDER_POWER,
TDATA_WIDTH => TDATA_WIDTH
)
PORT MAP(
aclk => aclk,
aresetn => aresetn,
s_axis_tvalid => s_axis_tvalid,
s_axis_tdata => s_axis_tdata,
s_axis_tlast => s_axis_tlast,
s_axis_tready => moving_avg_s_tready,
-- Connect input directly to moving average filter
s_axis_tvalid => s_axis_tvalid,
s_axis_tdata => s_axis_tdata,
s_axis_tlast => s_axis_tlast,
s_axis_tready => moving_avg_s_tready,
m_axis_tvalid => moving_avg_m_tvalid,
m_axis_tdata => moving_avg_m_tdata,
m_axis_tlast => moving_avg_m_tlast,
m_axis_tready => m_axis_tready
);
-- Moving average filter outputs (used when enable_filter = '1')
m_axis_tvalid => moving_avg_m_tvalid,
m_axis_tdata => moving_avg_m_tdata,
m_axis_tlast => moving_avg_m_tlast,
m_axis_tready => m_axis_tready
);
-- Main AXIS assignments based on enable_filter
s_axis_tready <= all_pass_s_tready WHEN enable_filter = '0' ELSE moving_avg_s_tready;
-- Output multiplexer: Select between filtered and unfiltered audio paths
-- This switching is controlled by the enable_filter signal
m_axis_tvalid <= all_pass_m_tvalid WHEN enable_filter = '0' ELSE moving_avg_m_tvalid;
m_axis_tdata <= all_pass_m_tdata WHEN enable_filter = '0' ELSE moving_avg_m_tdata;
m_axis_tlast <= all_pass_m_tlast WHEN enable_filter = '0' ELSE moving_avg_m_tlast;
-- Input ready selection: Route backpressure to the active filter
s_axis_tready <= all_pass_s_tready WHEN enable_filter = '0' ELSE moving_avg_s_tready;
-- Output data selection: Route output from the active filter
m_axis_tvalid <= all_pass_m_tvalid WHEN enable_filter = '0' ELSE moving_avg_m_tvalid;
m_axis_tdata <= all_pass_m_tdata WHEN enable_filter = '0' ELSE moving_avg_m_tdata;
m_axis_tlast <= all_pass_m_tlast WHEN enable_filter = '0' ELSE moving_avg_m_tlast;
-- Filter Path Selection Logic:
-- enable_filter = '0': All-pass path (unfiltered audio with matched latency)
-- enable_filter = '1': Moving average path (low-pass filtered audio)
--
-- Both filters run continuously but only the selected path is routed to output
-- This allows for glitch-free switching between filtered and unfiltered audio
END Behavioral;

View File

@@ -2,70 +2,95 @@ LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.NUMERIC_STD.ALL;
-- Entity: mute_controller
-- Purpose: Controls audio muting by replacing audio samples with zeros when mute is active
-- Implements AXI4-Stream interface for seamless integration in audio processing chain
ENTITY mute_controller IS
GENERIC (
TDATA_WIDTH : POSITIVE := 24
);
PORT (
aclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
GENERIC (
TDATA_WIDTH : POSITIVE := 24 -- Width of audio data bus (24-bit audio samples)
);
PORT (
-- Clock and reset signals
aclk : IN STD_LOGIC; -- Main clock input
aresetn : IN STD_LOGIC; -- Active-low asynchronous reset
s_axis_tvalid : IN STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
-- AXI4-Stream Slave Interface (Audio Input)
s_axis_tvalid : IN STD_LOGIC; -- Input data valid signal
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0); -- Audio sample input
s_axis_tlast : IN STD_LOGIC; -- Channel indicator (0=left, 1=right)
s_axis_tready : OUT STD_LOGIC; -- Ready to accept input data
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC;
-- AXI4-Stream Master Interface (Audio Output)
m_axis_tvalid : OUT STD_LOGIC; -- Output data valid signal
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0); -- Audio sample output (muted or passed through)
m_axis_tlast : OUT STD_LOGIC; -- Channel indicator passthrough
m_axis_tready : IN STD_LOGIC; -- Downstream ready signal
mute : IN STD_LOGIC
);
-- Control input
mute : IN STD_LOGIC -- Mute control (1=mute audio, 0=pass audio through)
);
END mute_controller;
ARCHITECTURE Behavioral OF mute_controller IS
SIGNAL m_axis_tvalid_int : STD_LOGIC;
-- Internal signal for output valid control
SIGNAL m_axis_tvalid_int : STD_LOGIC;
BEGIN
-- Assigning the output signals
m_axis_tvalid <= m_axis_tvalid_int;
s_axis_tready <= (m_axis_tready OR NOT m_axis_tvalid_int) AND aresetn;
-- Connect internal signals to output ports
m_axis_tvalid <= m_axis_tvalid_int;
PROCESS (aclk)
BEGIN
-- Input ready logic: Ready when downstream is ready OR no valid data pending, AND not in reset
-- This implements proper AXI4-Stream backpressure handling
s_axis_tready <= (m_axis_tready OR NOT m_axis_tvalid_int) AND aresetn;
IF rising_edge(aclk) THEN
-- Main mute control process
-- Handles AXI4-Stream protocol and mute functionality
PROCESS (aclk)
BEGIN
IF aresetn = '0' THEN
m_axis_tvalid_int <= '0';
m_axis_tlast <= '0';
IF rising_edge(aclk) THEN
ELSE
-- Clear valid flag when master interface is ready
IF m_axis_tready = '1' THEN
m_axis_tvalid_int <= '0';
END IF;
IF aresetn = '0' THEN
-- Reset state: Clear all output control signals
m_axis_tvalid_int <= '0'; -- No valid output data during reset
m_axis_tlast <= '0'; -- Clear channel indicator
-- Handle the data flow
IF s_axis_tvalid = '1' AND m_axis_tready = '1' THEN
IF mute = '1' THEN
m_axis_tdata <= (OTHERS => '0');
ELSE
m_axis_tdata <= s_axis_tdata;
END IF;
ELSE
-- Normal operation
m_axis_tvalid_int <= '1';
m_axis_tlast <= s_axis_tlast;
-- Output handshake management:
-- Clear valid flag when downstream accepts data
-- This allows new data to be output on the next cycle
IF m_axis_tready = '1' THEN
m_axis_tvalid_int <= '0';
END IF;
END IF;
-- Data processing: Handle mute control when both input and output are ready
-- This ensures proper AXI4-Stream handshaking
IF s_axis_tvalid = '1' AND m_axis_tready = '1' THEN
-- Mute control logic:
IF mute = '1' THEN
-- Mute active: Replace audio data with silence (all zeros)
-- This effectively removes all audio content while maintaining data flow
m_axis_tdata <= (OTHERS => '0');
ELSE
-- Mute inactive: Pass audio data through unchanged
-- Normal audio processing mode
m_axis_tdata <= s_axis_tdata;
END IF;
END IF;
-- Set output control signals
m_axis_tvalid_int <= '1'; -- Mark output data as valid
m_axis_tlast <= s_axis_tlast; -- Pass through channel indicator unchanged
END IF;
END IF;
END PROCESS;
END IF;
END IF;
END PROCESS;
END Behavioral;

View File

@@ -2,137 +2,169 @@ LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.NUMERIC_STD.ALL;
-- Entity: volume_controller
-- Purpose: Controls audio volume by scaling audio samples according to volume control input
-- Implements a two-stage processing pipeline: multiplication followed by saturation
-- This approach prevents overflow and distortion in the audio signal
ENTITY volume_controller IS
GENERIC (
TDATA_WIDTH : POSITIVE := 24;
VOLUME_WIDTH : POSITIVE := 10;
VOLUME_STEP_2 : POSITIVE := 6; -- i.e., volume_values_per_step = 2**VOLUME_STEP_2
HIGHER_BOUND : INTEGER := 2 ** 23 - 1; -- Inclusive
LOWER_BOUND : INTEGER := - 2 ** 23 -- Inclusive
);
PORT (
aclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
GENERIC (
TDATA_WIDTH : POSITIVE := 24; -- Width of audio data bus (24-bit audio samples)
VOLUME_WIDTH : POSITIVE := 10; -- Width of volume control input (10-bit = 0-1023 range)
VOLUME_STEP_2 : POSITIVE := 6; -- Log2 of volume values per step (2^6 = 64 values per step)
HIGHER_BOUND : INTEGER := 2 ** 23 - 1; -- Maximum positive value for saturation (inclusive)
LOWER_BOUND : INTEGER := - 2 ** 23 -- Maximum negative value for saturation (inclusive)
);
PORT (
-- Clock and reset signals
aclk : IN STD_LOGIC; -- Main clock input
aresetn : IN STD_LOGIC; -- Active-low asynchronous reset
s_axis_tvalid : IN STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
-- AXI4-Stream Slave Interface (Audio Input)
s_axis_tvalid : IN STD_LOGIC; -- Input data valid signal
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0); -- Audio sample input
s_axis_tlast : IN STD_LOGIC; -- Channel indicator (0=left, 1=right)
s_axis_tready : OUT STD_LOGIC; -- Ready to accept input data
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC;
-- AXI4-Stream Master Interface (Audio Output)
m_axis_tvalid : OUT STD_LOGIC; -- Output data valid signal
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0); -- Audio sample output (volume adjusted)
m_axis_tlast : OUT STD_LOGIC; -- Channel indicator passthrough
m_axis_tready : IN STD_LOGIC; -- Downstream ready signal
volume : IN STD_LOGIC_VECTOR(VOLUME_WIDTH - 1 DOWNTO 0)
);
-- Volume control input
volume : IN STD_LOGIC_VECTOR(VOLUME_WIDTH - 1 DOWNTO 0) -- Volume level (0=minimum, 1023=maximum)
);
END volume_controller;
ARCHITECTURE Behavioral OF volume_controller IS
-- Component declarations
COMPONENT volume_multiplier IS
GENERIC (
TDATA_WIDTH : POSITIVE := 24;
VOLUME_WIDTH : POSITIVE := 10;
VOLUME_STEP_2 : POSITIVE := 6 -- i.e., volume_values_per_step = 2**VOLUME_STEP_2
);
PORT (
aclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
-- Component declaration for volume multiplier
-- First stage: multiplies audio samples by volume scaling factor
-- Output has wider bit width to accommodate multiplication results
COMPONENT volume_multiplier IS
GENERIC (
TDATA_WIDTH : POSITIVE := 24; -- Input audio data width
VOLUME_WIDTH : POSITIVE := 10; -- Volume control width
VOLUME_STEP_2 : POSITIVE := 6 -- Step size for volume control
);
PORT (
aclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
s_axis_tvalid : IN STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
-- Input AXI4-Stream interface
s_axis_tvalid : IN STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 + 2 ** (VOLUME_WIDTH - VOLUME_STEP_2 - 1) DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC;
-- Output AXI4-Stream interface (wider data width due to multiplication)
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 + 2 ** (VOLUME_WIDTH - VOLUME_STEP_2 - 1) DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC;
volume : IN STD_LOGIC_VECTOR(VOLUME_WIDTH - 1 DOWNTO 0)
);
END COMPONENT;
volume : IN STD_LOGIC_VECTOR(VOLUME_WIDTH - 1 DOWNTO 0)
);
END COMPONENT;
COMPONENT volume_saturator IS
GENERIC (
TDATA_WIDTH : POSITIVE := 24;
VOLUME_WIDTH : POSITIVE := 10;
VOLUME_STEP_2 : POSITIVE := 6; -- i.e., number_of_steps = 2**VOLUME_STEP_2
HIGHER_BOUND : INTEGER := 2 ** 15 - 1; -- Inclusive
LOWER_BOUND : INTEGER := - 2 ** 15 -- Inclusive
);
PORT (
aclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
-- Component declaration for volume saturator
-- Second stage: clips multiplication results to prevent overflow and distortion
-- Reduces bit width back to original audio format
COMPONENT volume_saturator IS
GENERIC (
TDATA_WIDTH : POSITIVE := 24; -- Final audio data width
VOLUME_WIDTH : POSITIVE := 10; -- Volume control width
VOLUME_STEP_2 : POSITIVE := 6; -- Step size for volume control
HIGHER_BOUND : INTEGER := 2 ** 15 - 1; -- Upper saturation limit (inclusive)
LOWER_BOUND : INTEGER := - 2 ** 15 -- Lower saturation limit (inclusive)
);
PORT (
aclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
s_axis_tvalid : IN STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 + 2 ** (VOLUME_WIDTH - VOLUME_STEP_2 - 1) DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
-- Input AXI4-Stream interface (wide data from multiplier)
s_axis_tvalid : IN STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 + 2 ** (VOLUME_WIDTH - VOLUME_STEP_2 - 1) DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC
);
END COMPONENT;
-- Output AXI4-Stream interface (original audio data width)
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC
);
END COMPONENT;
-- Internal AXIS signals
SIGNAL int_axis_tvalid : STD_LOGIC;
SIGNAL int_axis_tready : STD_LOGIC;
SIGNAL int_axis_tdata : STD_LOGIC_VECTOR(TDATA_WIDTH - 1 + 2 ** (VOLUME_WIDTH - VOLUME_STEP_2 - 1) DOWNTO 0);
SIGNAL int_axis_tlast : STD_LOGIC;
-- Internal AXI4-Stream signals between multiplier and saturator
-- These signals carry the wide multiplication results before saturation
SIGNAL int_axis_tvalid : STD_LOGIC; -- Valid signal between stages
SIGNAL int_axis_tready : STD_LOGIC; -- Ready signal between stages
SIGNAL int_axis_tdata : STD_LOGIC_VECTOR(TDATA_WIDTH - 1 + 2 ** (VOLUME_WIDTH - VOLUME_STEP_2 - 1) DOWNTO 0); -- Wide data between stages
SIGNAL int_axis_tlast : STD_LOGIC; -- Channel indicator between stages
BEGIN
-- Instantiate volume_multiplier
volume_multiplier_inst : volume_multiplier
GENERIC MAP(
TDATA_WIDTH => TDATA_WIDTH,
VOLUME_WIDTH => VOLUME_WIDTH,
VOLUME_STEP_2 => VOLUME_STEP_2
)
PORT MAP(
aclk => aclk,
aresetn => aresetn,
-- Instantiate volume_multiplier (First Stage)
-- Multiplies incoming audio samples by volume scaling factor
-- Output has extended bit width to prevent loss of precision
volume_multiplier_inst : volume_multiplier
GENERIC MAP(
TDATA_WIDTH => TDATA_WIDTH, -- Input audio sample width
VOLUME_WIDTH => VOLUME_WIDTH, -- Volume control resolution
VOLUME_STEP_2 => VOLUME_STEP_2 -- Volume step size
)
PORT MAP(
aclk => aclk,
aresetn => aresetn,
s_axis_tvalid => s_axis_tvalid,
s_axis_tdata => s_axis_tdata,
s_axis_tlast => s_axis_tlast,
s_axis_tready => s_axis_tready,
-- Connect to external input interface
s_axis_tvalid => s_axis_tvalid,
s_axis_tdata => s_axis_tdata,
s_axis_tlast => s_axis_tlast,
s_axis_tready => s_axis_tready,
m_axis_tvalid => int_axis_tvalid,
m_axis_tdata => int_axis_tdata,
m_axis_tlast => int_axis_tlast,
m_axis_tready => int_axis_tready,
-- Connect to internal interface (wide data)
m_axis_tvalid => int_axis_tvalid,
m_axis_tdata => int_axis_tdata,
m_axis_tlast => int_axis_tlast,
m_axis_tready => int_axis_tready,
volume => volume
);
volume => volume
);
-- Instantiate volume_saturator
volume_saturator_inst : volume_saturator
GENERIC MAP(
TDATA_WIDTH => TDATA_WIDTH,
VOLUME_WIDTH => VOLUME_WIDTH,
VOLUME_STEP_2 => VOLUME_STEP_2,
HIGHER_BOUND => HIGHER_BOUND,
LOWER_BOUND => LOWER_BOUND
)
PORT MAP(
aclk => aclk,
aresetn => aresetn,
-- Instantiate volume_saturator (Second Stage)
-- Clips multiplication results to prevent overflow and distortion
-- Reduces bit width back to original audio format for output
volume_saturator_inst : volume_saturator
GENERIC MAP(
TDATA_WIDTH => TDATA_WIDTH, -- Final audio sample width
VOLUME_WIDTH => VOLUME_WIDTH, -- Volume control resolution
VOLUME_STEP_2 => VOLUME_STEP_2, -- Volume step size
HIGHER_BOUND => HIGHER_BOUND, -- Upper saturation limit
LOWER_BOUND => LOWER_BOUND -- Lower saturation limit
)
PORT MAP(
aclk => aclk,
aresetn => aresetn,
s_axis_tvalid => int_axis_tvalid,
s_axis_tdata => int_axis_tdata,
s_axis_tlast => int_axis_tlast,
s_axis_tready => int_axis_tready,
-- Connect to internal interface (wide data from multiplier)
s_axis_tvalid => int_axis_tvalid,
s_axis_tdata => int_axis_tdata,
s_axis_tlast => int_axis_tlast,
s_axis_tready => int_axis_tready,
m_axis_tvalid => m_axis_tvalid,
m_axis_tdata => m_axis_tdata,
m_axis_tlast => m_axis_tlast,
m_axis_tready => m_axis_tready
);
-- Connect to external output interface
m_axis_tvalid => m_axis_tvalid,
m_axis_tdata => m_axis_tdata,
m_axis_tlast => m_axis_tlast,
m_axis_tready => m_axis_tready
);
-- Pipeline Operation:
-- 1. Audio samples enter volume_multiplier with original bit width
-- 2. Multiplier scales samples by volume factor, output has extended bit width
-- 3. Saturator clips results to prevent overflow, reduces to original bit width
-- 4. Final audio samples has adjusted volume and bit width, ready for downstream processing
END Behavioral;

View File

@@ -2,107 +2,168 @@ LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.NUMERIC_STD.ALL;
-- Entity: volume_multiplier
-- Purpose: First stage of volume control pipeline - multiplies audio samples by volume scaling factor
-- Uses bit-shifting multiplication for efficient hardware implementation
-- Implements exponential volume scaling for natural-feeling volume control
ENTITY volume_multiplier IS
GENERIC (
TDATA_WIDTH : POSITIVE := 24;
VOLUME_WIDTH : POSITIVE := 10;
VOLUME_STEP_2 : POSITIVE := 6 -- i.e., volume_values_per_step = 2**VOLUME_STEP_2
);
PORT (
aclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
GENERIC (
TDATA_WIDTH : POSITIVE := 24; -- Width of input audio data (24-bit audio samples)
VOLUME_WIDTH : POSITIVE := 10; -- Width of volume control input (10-bit = 0-1023 range)
VOLUME_STEP_2 : POSITIVE := 6 -- Log2 of volume values per step (2^6 = 64 values per step)
);
PORT (
-- Clock and reset signals
aclk : IN STD_LOGIC; -- Main clock input
aresetn : IN STD_LOGIC; -- Active-low asynchronous reset
s_axis_tvalid : IN STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
-- AXI4-Stream Slave Interface (Audio Input)
s_axis_tvalid : IN STD_LOGIC; -- Input data valid signal
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0); -- Audio sample input
s_axis_tlast : IN STD_LOGIC; -- Channel indicator (0=left, 1=right)
s_axis_tready : OUT STD_LOGIC; -- Ready to accept input data
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 + 2 ** (VOLUME_WIDTH - VOLUME_STEP_2 - 1) DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC;
-- AXI4-Stream Master Interface (Audio Output with extended width)
m_axis_tvalid : OUT STD_LOGIC; -- Output data valid signal
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 + 2 ** (VOLUME_WIDTH - VOLUME_STEP_2 - 1) DOWNTO 0); -- Extended width output data
m_axis_tlast : OUT STD_LOGIC; -- Channel indicator passthrough
m_axis_tready : IN STD_LOGIC; -- Downstream ready signal
volume : IN STD_LOGIC_VECTOR(VOLUME_WIDTH - 1 DOWNTO 0)
);
-- Volume control input
volume : IN STD_LOGIC_VECTOR(VOLUME_WIDTH - 1 DOWNTO 0) -- Volume level (0=minimum, 1023=maximum)
);
END volume_multiplier;
ARCHITECTURE Behavioral OF volume_multiplier IS
CONSTANT VOLUME_STEPS : INTEGER := (2 ** (VOLUME_WIDTH - 1)) / (2 ** VOLUME_STEP_2) + 1;
CONSTANT VOL_MID : INTEGER := 2 ** (VOLUME_WIDTH - 1); -- 512 for 10 bit
CONSTANT DEAD_ZONE : INTEGER := (2 ** VOLUME_STEP_2) / 2;
-- Calculate volume control parameters based on generics
CONSTANT VOLUME_STEPS : INTEGER := (2 ** (VOLUME_WIDTH - 1)) / (2 ** VOLUME_STEP_2) + 1; -- Number of volume steps (9 steps for 10-bit)
CONSTANT VOL_MID : INTEGER := 2 ** (VOLUME_WIDTH - 1); -- Center volume position (512 for 10-bit)
CONSTANT DEAD_ZONE : INTEGER := (2 ** VOLUME_STEP_2) / 2; -- Dead zone around center (32 for step size 64)
SIGNAL volume_exp_mult : INTEGER RANGE -VOLUME_STEPS TO VOLUME_STEPS := 0;
-- Volume scaling factor as exponential multiplier
-- Positive values = amplification (left shift), negative values = attenuation (right shift)
SIGNAL volume_exp_mult : INTEGER RANGE -VOLUME_STEPS TO VOLUME_STEPS := 0;
SIGNAL m_axis_tvalid_int : STD_LOGIC;
-- Internal AXI4-Stream signals
SIGNAL m_axis_tvalid_int : STD_LOGIC; -- Internal valid signal for output
BEGIN
-- Assigning the output signals
m_axis_tvalid <= m_axis_tvalid_int;
s_axis_tready <= (m_axis_tready OR NOT m_axis_tvalid_int) AND aresetn;
-- Connect internal signals to output ports
m_axis_tvalid <= m_axis_tvalid_int;
-- Volume to exp process to avoid changing the volume value when multiplying it for the sample data
PROCESS (aclk)
BEGIN
-- Input ready logic: Ready when downstream is ready OR no valid data pending, AND not in reset
-- This implements proper AXI4-Stream backpressure handling
s_axis_tready <= (m_axis_tready OR NOT m_axis_tvalid_int) AND aresetn;
IF rising_edge(aclk) THEN
-- Volume to exponent conversion process
-- Converts joystick position to bit-shift amount for exponential volume scaling
PROCESS (aclk)
BEGIN
IF aresetn = '0' THEN
volume_exp_mult <= 0;
IF rising_edge(aclk) THEN
ELSE
-- Volume to signed and centered and convert to power of 2 exponent
volume_exp_mult <= to_integer(
shift_right(
signed('0' & volume) - to_signed(VOL_MID - DEAD_ZONE, volume'length + 1),
VOLUME_STEP_2
)
);
IF aresetn = '0' THEN
-- Reset: Set to unity gain (no scaling)
volume_exp_mult <= 0;
END IF;
ELSE
-- Volume mapping and conversion to exponential scaling factor:
-- 1. Convert volume to signed value
-- 2. Center around middle position (VOL_MID)
-- 3. Apply dead zone offset for smooth center operation
-- 4. Divide by step size to get exponential scaling factor
--
-- Volume Range Mapping:
-- volume = 0-479: Negative exponent (attenuation, right shift)
-- volume = 480-543: Zero exponent (unity gain, dead zone)
-- volume = 544-1023: Positive exponent (amplification, left shift)
volume_exp_mult <= to_integer(
shift_right(
signed('0' & volume) - to_signed(VOL_MID - DEAD_ZONE, volume'length + 1),
VOLUME_STEP_2
)
);
END IF;
END IF;
END PROCESS;
END IF;
-- Handle AXIS stream
PROCESS (aclk)
BEGIN
END PROCESS;
IF rising_edge(aclk) THEN
-- AXI4-Stream data processing
-- Applies exponential volume scaling using bit-shifting multiplication
PROCESS (aclk)
BEGIN
IF aresetn = '0' THEN
m_axis_tvalid_int <= '0';
m_axis_tlast <= '0';
IF rising_edge(aclk) THEN
ELSE
-- Clear valid flag when master interface is ready
IF m_axis_tready = '1' THEN
m_axis_tvalid_int <= '0';
END IF;
IF aresetn = '0' THEN
-- Reset output interface
m_axis_tvalid_int <= '0'; -- No valid output data
m_axis_tlast <= '0'; -- Clear channel indicator
-- Handle the data flow
IF s_axis_tvalid = '1' AND m_axis_tready = '1' THEN
-- Multiply the input data with the volume and assign to output
-- Joystick datasheet: (y-axis) a value of 0 when it is tilted all the way down
-- and a value of 1023 when it is tilted all the way up
IF volume_exp_mult >= 0 THEN
m_axis_tdata <= STD_LOGIC_VECTOR(shift_left(resize(signed(s_axis_tdata), m_axis_tdata'LENGTH), volume_exp_mult));
ELSE
-- Output handshake management:
-- Clear valid flag when downstream accepts data
IF m_axis_tready = '1' THEN
m_axis_tvalid_int <= '0';
END IF;
ELSE
m_axis_tdata <= STD_LOGIC_VECTOR(shift_right(resize(signed(s_axis_tdata), m_axis_tdata'LENGTH), - volume_exp_mult));
-- Data processing: Apply volume scaling when both input and output are ready
IF s_axis_tvalid = '1' AND m_axis_tready = '1' THEN
-- Volume scaling using bit-shifting for exponential response:
--
-- Joystick mapping (from datasheet):
-- Y-axis: 0 = tilted all the way down (minimum volume)
-- 1023 = tilted all the way up (maximum volume)
--
-- Scaling method:
-- Positive exponent: Left shift = amplification (multiply by 2^n)
-- Negative exponent: Right shift = attenuation (divide by 2^n)
-- Zero exponent: No shift = unity gain (pass through)
END IF;
IF volume_exp_mult >= 0 THEN
-- Amplification: Left shift for volume boost
-- Resize to extended width first to prevent overflow
m_axis_tdata <= STD_LOGIC_VECTOR(
shift_left(
resize(signed(s_axis_tdata), m_axis_tdata'LENGTH),
volume_exp_mult
)
);
m_axis_tvalid_int <= '1';
m_axis_tlast <= s_axis_tlast;
ELSE
-- Attenuation: Right shift for volume reduction
-- Arithmetic right shift preserves sign for signed audio data
m_axis_tdata <= STD_LOGIC_VECTOR(
shift_right(
resize(signed(s_axis_tdata), m_axis_tdata'LENGTH),
- volume_exp_mult -- Convert negative to positive shift amount
)
);
END IF;
END IF;
END IF;
-- Set output control signals
m_axis_tvalid_int <= '1'; -- Mark output data as valid
m_axis_tlast <= s_axis_tlast; -- Pass through channel indicator
END IF;
END IF;
END PROCESS;
END IF;
END IF;
END PROCESS;
-- Example scaling factors (VOLUME_STEP_2 = 6, 64 values per step):
-- volume_exp_mult = -3: Divide by 8 (>>3)
-- volume_exp_mult = -2: Divide by 4 (>>2)
-- volume_exp_mult = -1: Divide by 2 (>>1)
-- volume_exp_mult = 0: No change (unity)
-- volume_exp_mult = +1: Multiply by 2 (<<1)
-- volume_exp_mult = +2: Multiply by 4 (<<2)
-- volume_exp_mult = +3: Multiply by 8 (<<3)
END Behavioral;

View File

@@ -2,80 +2,123 @@ LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.NUMERIC_STD.ALL;
-- Entity: volume_saturator
-- Purpose: Second stage of volume control pipeline - clips multiplication results to prevent overflow
-- Reduces bit width from extended multiplier output back to original audio format
-- Implements saturation (clipping) to prevent audio distortion from mathematical overflow
ENTITY volume_saturator IS
GENERIC (
TDATA_WIDTH : POSITIVE := 24;
VOLUME_WIDTH : POSITIVE := 10;
VOLUME_STEP_2 : POSITIVE := 6; -- i.e., number_of_steps = 2**(VOLUME_STEP_2)
HIGHER_BOUND : INTEGER := 2 ** 15 - 1; -- Inclusive
LOWER_BOUND : INTEGER := - 2 ** 15 -- Inclusive
);
PORT (
aclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
GENERIC (
TDATA_WIDTH : POSITIVE := 24; -- Width of final audio data output (24-bit audio samples)
VOLUME_WIDTH : POSITIVE := 10; -- Width of volume control input (10-bit = 0-1023 range)
VOLUME_STEP_2 : POSITIVE := 6; -- Log2 of volume values per step (2^6 = 64 values per step)
HIGHER_BOUND : INTEGER := 2 ** 15 - 1; -- Maximum positive value for saturation (inclusive)
LOWER_BOUND : INTEGER := - 2 ** 15 -- Maximum negative value for saturation (inclusive)
);
PORT (
-- Clock and reset signals
aclk : IN STD_LOGIC; -- Main clock input
aresetn : IN STD_LOGIC; -- Active-low asynchronous reset
s_axis_tvalid : IN STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 + 2 ** (VOLUME_WIDTH - VOLUME_STEP_2 - 1) DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
-- AXI4-Stream Slave Interface (Extended width input from multiplier)
s_axis_tvalid : IN STD_LOGIC; -- Input data valid signal
s_axis_tdata : IN STD_LOGIC_VECTOR(TDATA_WIDTH - 1 + 2 ** (VOLUME_WIDTH - VOLUME_STEP_2 - 1) DOWNTO 0); -- Wide input data from multiplier
s_axis_tlast : IN STD_LOGIC; -- Channel indicator (0=left, 1=right)
s_axis_tready : OUT STD_LOGIC; -- Ready to accept input data
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC
);
-- AXI4-Stream Master Interface (Original width output for audio)
m_axis_tvalid : OUT STD_LOGIC; -- Output data valid signal
m_axis_tdata : OUT STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0); -- Saturated audio sample output
m_axis_tlast : OUT STD_LOGIC; -- Channel indicator passthrough
m_axis_tready : IN STD_LOGIC -- Downstream ready signal
);
END volume_saturator;
ARCHITECTURE Behavioral OF volume_saturator IS
CONSTANT HIGHER_BOUND_VEC : STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0) := STD_LOGIC_VECTOR(to_signed(HIGHER_BOUND, TDATA_WIDTH));
CONSTANT LOWER_BOUND_VEC : STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0) := STD_LOGIC_VECTOR(to_signed(LOWER_BOUND, TDATA_WIDTH));
-- Pre-calculated saturation bounds as STD_LOGIC_VECTORS for efficient comparison
-- These constants define the valid range for audio samples after volume processing
CONSTANT HIGHER_BOUND_VEC : STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0) := STD_LOGIC_VECTOR(to_signed(HIGHER_BOUND, TDATA_WIDTH));
CONSTANT LOWER_BOUND_VEC : STD_LOGIC_VECTOR(TDATA_WIDTH - 1 DOWNTO 0) := STD_LOGIC_VECTOR(to_signed(LOWER_BOUND, TDATA_WIDTH));
SIGNAL m_axis_tvalid_int : STD_LOGIC;
-- Internal AXI4-Stream control signal
SIGNAL m_axis_tvalid_int : STD_LOGIC;
BEGIN
-- Output assignments
m_axis_tvalid <= m_axis_tvalid_int;
s_axis_tready <= (m_axis_tready OR NOT m_axis_tvalid_int) AND aresetn;
PROCESS (aclk)
BEGIN
-- Connect internal signals to output ports
m_axis_tvalid <= m_axis_tvalid_int;
IF rising_edge(aclk) THEN
-- Input ready logic: Ready when downstream is ready OR no valid data pending, AND not in reset
-- This implements proper AXI4-Stream backpressure handling
s_axis_tready <= (m_axis_tready OR NOT m_axis_tvalid_int) AND aresetn;
IF aresetn = '0' THEN
m_axis_tvalid_int <= '0';
m_axis_tlast <= '0';
-- Main saturation and data processing logic
PROCESS (aclk)
BEGIN
ELSE
-- Clear valid flag when master interface is ready
IF m_axis_tready = '1' THEN
m_axis_tvalid_int <= '0';
END IF;
IF rising_edge(aclk) THEN
-- Handle the data flow
IF s_axis_tvalid = '1' AND m_axis_tready = '1' THEN
-- Check if the input data is within the bounds else saturate
IF signed(s_axis_tdata) > signed(HIGHER_BOUND_VEC) THEN
m_axis_tdata <= HIGHER_BOUND_VEC;
IF aresetn = '0' THEN
-- Reset output interface
m_axis_tvalid_int <= '0'; -- No valid output data during reset
m_axis_tlast <= '0'; -- Clear channel indicator
ELSIF signed(s_axis_tdata) < signed(LOWER_BOUND_VEC) THEN
m_axis_tdata <= LOWER_BOUND_VEC;
ELSE
-- Normal operation
ELSE
m_axis_tdata <= STD_LOGIC_VECTOR(resize(signed(s_axis_tdata), TDATA_WIDTH));
-- Output handshake management:
-- Clear valid flag when downstream accepts data
IF m_axis_tready = '1' THEN
m_axis_tvalid_int <= '0';
END IF;
END IF;
-- Data processing: Apply saturation when both input and output are ready
IF s_axis_tvalid = '1' AND m_axis_tready = '1' THEN
m_axis_tvalid_int <= '1';
m_axis_tlast <= s_axis_tlast;
-- Saturation Logic:
-- Check if the wide input data exceeds the valid audio range
-- If so, clip (saturate) to the nearest valid value
-- This prevents overflow distortion while preserving audio quality
END IF;
IF signed(s_axis_tdata) > signed(HIGHER_BOUND_VEC) THEN
-- Positive overflow: Clip to maximum positive value
-- This prevents "wraparound" distortion from mathematical overflow
m_axis_tdata <= HIGHER_BOUND_VEC;
END IF;
ELSIF signed(s_axis_tdata) < signed(LOWER_BOUND_VEC) THEN
-- Negative overflow: Clip to maximum negative value
-- This prevents "wraparound" distortion from mathematical underflow
m_axis_tdata <= LOWER_BOUND_VEC;
END IF;
ELSE
-- Value within valid range: Resize to output width without clipping
-- This preserves the original audio quality when no overflow occurs
m_axis_tdata <= STD_LOGIC_VECTOR(resize(signed(s_axis_tdata), TDATA_WIDTH));
END PROCESS;
END IF;
-- Set output control signals
m_axis_tvalid_int <= '1'; -- Mark output data as valid
m_axis_tlast <= s_axis_tlast; -- Pass through channel indicator
END IF;
END IF;
END IF;
END PROCESS;
-- Saturation Purpose and Benefits:
-- 1. Prevents audio distortion from mathematical overflow
-- 2. Maintains audio dynamic range within valid bit representation
-- 3. Reduces wide multiplication results back to standard audio format
-- 4. Provides "soft limiting" behavior for volume control
-- 5. Ensures compatibility with downstream audio processing blocks
--
-- Without saturation, volume amplification could cause:
-- - Mathematical overflow leading to sign bit flips
-- - Severe audio distortion (crackling, popping sounds)
-- - Invalid audio sample values outside the representable range
END Behavioral;

View File

@@ -47,7 +47,7 @@
<Option Name="IPStaticSourceDir" Val="$PIPUSERFILESDIR/ipstatic"/>
<Option Name="EnableBDX" Val="FALSE"/>
<Option Name="DSABoardId" Val="basys3"/>
<Option Name="WTXSimLaunchSim" Val="79"/>
<Option Name="WTXSimLaunchSim" Val="85"/>
<Option Name="WTModelSimLaunchSim" Val="0"/>
<Option Name="WTQuestaLaunchSim" Val="0"/>
<Option Name="WTIesLaunchSim" Val="0"/>