Refactor image processing components: update bit depth in rgb2gray and divider_by_3, enhance img_conv architecture, and adjust simulation settings

This commit is contained in:
2025-04-11 18:06:02 +02:00
parent c712b160cc
commit b2d3060247
6 changed files with 337 additions and 144 deletions

View File

@@ -45,9 +45,7 @@ ARCHITECTURE Behavioral OF rgb2gray_tb IS
BEGIN BEGIN
m_axis_tready<='1'; clk <= NOT clk AFTER clk_period / 2; -- Clock generation
clk <= not clk AFTER clk_period / 2; -- Clock generation
-- Instantiate the Device Under Test (DUT) -- Instantiate the Device Under Test (DUT)
DUT : rgb2gray DUT : rgb2gray
@@ -68,12 +66,68 @@ BEGIN
stimulus_process : PROCESS stimulus_process : PROCESS
VARIABLE pixel_value : INTEGER := 1; -- Variable to increment pixel values VARIABLE pixel_value : INTEGER := 1; -- Variable to increment pixel values
BEGIN BEGIN
wait for 10 ns; WAIT FOR 10 ns;
resetn <= '1'; resetn <= '1';
s_axis_tvalid <= '1'; s_axis_tvalid <= '1';
-- Send multiple RGB pixels with incrementing values -- Send multiple RGB pixels with incrementing values
FOR i IN 0 TO 10 LOOP -- Send 10 pixels FOR i IN 0 TO 5 LOOP -- Send 10 pixels
-- R component
s_axis_tdata <= STD_LOGIC_VECTOR(TO_UNSIGNED(pixel_value, 8));
WAIT FOR clk_period;
-- G component
pixel_value := pixel_value + 5;
s_axis_tdata <= STD_LOGIC_VECTOR(TO_UNSIGNED(pixel_value, 8));
WAIT FOR clk_period;
-- B component
pixel_value := pixel_value + 1;
s_axis_tdata <= STD_LOGIC_VECTOR(TO_UNSIGNED(pixel_value, 8));
WAIT FOR clk_period;
-- Reset last signal
pixel_value := pixel_value + 1;
END LOOP;
m_axis_tready <= '0';
-- R component
s_axis_tdata <= STD_LOGIC_VECTOR(TO_UNSIGNED(pixel_value, 8));
WAIT FOR clk_period;
-- G component
pixel_value := pixel_value + 5;
s_axis_tdata <= STD_LOGIC_VECTOR(TO_UNSIGNED(pixel_value, 8));
WAIT FOR clk_period;
-- B component
pixel_value := pixel_value + 1;
s_axis_tdata <= STD_LOGIC_VECTOR(TO_UNSIGNED(pixel_value, 8));
WAIT FOR clk_period;
FOR i IN 0 TO 3 LOOP -- Send 10 pixels
-- R component
s_axis_tdata <= STD_LOGIC_VECTOR(TO_UNSIGNED(pixel_value, 8));
WAIT FOR clk_period;
-- G component
pixel_value := pixel_value + 5;
s_axis_tdata <= STD_LOGIC_VECTOR(TO_UNSIGNED(pixel_value, 8));
WAIT FOR clk_period;
-- B component
pixel_value := pixel_value + 1;
s_axis_tdata <= STD_LOGIC_VECTOR(TO_UNSIGNED(pixel_value, 8));
WAIT FOR clk_period;
-- Reset last signal
pixel_value := pixel_value + 1;
END LOOP;
m_axis_tready <= '1';
FOR i IN 0 TO 3 LOOP -- Send 10 pixels
-- R component -- R component
s_axis_tdata <= STD_LOGIC_VECTOR(TO_UNSIGNED(pixel_value, 8)); s_axis_tdata <= STD_LOGIC_VECTOR(TO_UNSIGNED(pixel_value, 8));
WAIT FOR clk_period; WAIT FOR clk_period;

View File

@@ -1,99 +1,94 @@
library ieee; LIBRARY ieee;
use ieee.std_logic_1164.all; USE ieee.std_logic_1164.ALL;
use ieee.numeric_std.all; USE ieee.numeric_std.ALL;
ENTITY depacketizer IS
GENERIC (
entity depacketizer is
generic (
HEADER : INTEGER := 16#FF#; HEADER : INTEGER := 16#FF#;
FOOTER : INTEGER := 16#F1# FOOTER : INTEGER := 16#F1#
); );
port ( PORT (
clk : in std_logic; clk : IN STD_LOGIC;
aresetn : in std_logic; aresetn : IN STD_LOGIC;
s_axis_tdata : in std_logic_vector(7 downto 0); s_axis_tdata : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axis_tvalid : in std_logic; s_axis_tvalid : IN STD_LOGIC;
s_axis_tready : out std_logic; s_axis_tready : OUT STD_LOGIC;
m_axis_tdata : out std_logic_vector(7 downto 0); m_axis_tdata : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axis_tvalid : out std_logic; m_axis_tvalid : OUT STD_LOGIC;
m_axis_tready : in std_logic; m_axis_tready : IN STD_LOGIC;
m_axis_tlast : out std_logic m_axis_tlast : OUT STD_LOGIC
); );
end entity depacketizer; END ENTITY depacketizer;
architecture rtl of depacketizer is ARCHITECTURE rtl OF depacketizer IS
-- Enumeration for the state machine -- Enumeration for the state machine
-- IDLE: Waiting for the start of a new packet -- IDLE: Waiting for the start of a new packet
-- STREAMING: Actively processing and forwarding packet data -- STREAMING: Actively processing and forwarding packet data
type state_type is (IDLE, STREAMING); TYPE state_type IS (IDLE, STREAMING);
signal state : state_type := IDLE; SIGNAL state : state_type := IDLE;
-- Buffer to handle backpressure -- Buffer to handle backpressure
signal buffer_in : std_logic_vector(7 downto 0) := (others => '0'); SIGNAL buffer_in : STD_LOGIC_VECTOR(7 DOWNTO 0) := (OTHERS => '0');
signal buffer_valid : std_logic := '0'; -- Indicates if buffer_in contains valid data SIGNAL buffer_valid : STD_LOGIC := '0'; -- Indicates if buffer_in contains valid data
begin BEGIN
depacketizer_fsm: process(clk) depacketizer_fsm : PROCESS (clk)
begin BEGIN
if rising_edge(clk) then IF rising_edge(clk) THEN
if aresetn = '0' then IF aresetn = '0' THEN
-- Reset: back to idle and clear everything -- Reset: back to idle and clear everything
state <= IDLE; state <= IDLE;
s_axis_tready <= '0'; s_axis_tready <= '0';
m_axis_tvalid <= '0'; m_axis_tvalid <= '0';
m_axis_tlast <= '0'; m_axis_tlast <= '0';
m_axis_tdata <= (others => '0'); m_axis_tdata <= (OTHERS => '0');
buffer_in <= (others => '0'); buffer_in <= (OTHERS => '0');
buffer_valid <= '0'; buffer_valid <= '0';
else ELSE
-- Defaults for each clock cycle -- Defaults for each clock cycle
s_axis_tready <= '1'; s_axis_tready <= '1';
m_axis_tvalid <= '0'; m_axis_tvalid <= '0';
m_axis_tlast <= '0'; m_axis_tlast <= '0';
case state is CASE state IS
when IDLE => WHEN IDLE =>
-- Wait for start of a new packet -- Wait for start of a new packet
if s_axis_tvalid = '1' then IF s_axis_tvalid = '1' THEN
if s_axis_tdata = std_logic_vector(to_unsigned(HEADER, 8)) then m_axis_tvalid <= '0';
IF s_axis_tdata = STD_LOGIC_VECTOR(to_unsigned(HEADER, 8)) THEN
state <= STREAMING; state <= STREAMING;
end if; END IF;
end if; END IF;
WHEN STREAMING =>
IF s_axis_tvalid = '1' THEN
when STREAMING =>
if s_axis_tvalid = '1' then
-- End of packet detected -- End of packet detected
if s_axis_tdata = std_logic_vector(to_unsigned(FOOTER, 8)) then IF s_axis_tdata = STD_LOGIC_VECTOR(to_unsigned(FOOTER, 8)) THEN
-- Send the last data and transition to IDLE
m_axis_tdata <= buffer_in; -- Send the last buffered data
state <= IDLE; state <= IDLE;
m_axis_tlast <= '1'; -- Let receiver know packet ends m_axis_tlast <= '1'; -- Let receiver know packet ends
else ELSE
-- Valid payload: send to output -- Valid payload: send to output
if buffer_valid = '1' then IF buffer_valid = '1' AND m_axis_tready = '1' THEN
if m_axis_tready = '1' then
m_axis_tdata <= buffer_in; m_axis_tdata <= buffer_in;
m_axis_tvalid <= '1'; m_axis_tvalid <= '1';
buffer_valid <= '0'; -- Clear the buffer buffer_valid <= '0'; -- Clear the buffer
end if; END IF;
else
if m_axis_tready = '1' then
m_axis_tdata <= s_axis_tdata;
m_axis_tvalid <= '1';
else
buffer_in <= s_axis_tdata; buffer_in <= s_axis_tdata;
buffer_valid <= '1'; -- Mark buffer as valid buffer_valid <= '1';
end if; END IF;
end if; END IF;
end if;
end if;
end case; END CASE;
end if; END IF;
end if; END IF;
end process; END PROCESS;
end architecture; END ARCHITECTURE;

View File

@@ -7,11 +7,11 @@ USE IEEE.MATH_REAL.ALL;
ENTITY divider_by_3 IS ENTITY divider_by_3 IS
GENERIC ( GENERIC (
BIT_DEPTH : INTEGER := 8 BIT_DEPTH : INTEGER := 7
); );
PORT ( PORT (
dividend : IN UNSIGNED(BIT_DEPTH + 1 DOWNTO 0); dividend : IN UNSIGNED(BIT_DEPTH + 1 DOWNTO 0);
gray : OUT UNSIGNED(BIT_DEPTH - 1 DOWNTO 0) result : OUT UNSIGNED(BIT_DEPTH - 1 DOWNTO 0)
); );
END divider_by_3; END divider_by_3;
@@ -20,12 +20,11 @@ ARCHITECTURE Behavioral OF divider_by_3 IS
CONSTANT DIVISION_MULTIPLIER : INTEGER := INTEGER(floor(real(2 ** (BIT_DEPTH + 2)) / 3.0)); CONSTANT DIVISION_MULTIPLIER : INTEGER := INTEGER(floor(real(2 ** (BIT_DEPTH + 2)) / 3.0));
-- Constant to calculate the length of the result signal -- Constant to calculate the length of the result signal
CONSTANT RESULT_WIDTH : INTEGER := (2 * BIT_DEPTH) + 2; CONSTANT RESULT_WIDTH : INTEGER := (2 * BIT_DEPTH) + 2; -- 16 bit
-- Signals to hold the sum of the RGB channels and the intermediate results -- Signals to hold the sum of the RGB channels and the intermediate results
SIGNAL rgb_sum_extended : UNSIGNED(BIT_DEPTH + 1 DOWNTO 0) := (OTHERS => '0'); SIGNAL sum_extended : UNSIGNED(BIT_DEPTH + 1 DOWNTO 0) := (OTHERS => '0');
SIGNAL scaled_result : UNSIGNED(RESULT_WIDTH DOWNTO 0) := (OTHERS => '0'); SIGNAL scaled_result : UNSIGNED(RESULT_WIDTH - 1 DOWNTO 0) := (OTHERS => '0');
SIGNAL grayscale_value : UNSIGNED(BIT_DEPTH - 1 DOWNTO 0) := (OTHERS => '0');
BEGIN BEGIN
-- Explanation of how the division by 3 is performed: -- Explanation of how the division by 3 is performed:
@@ -37,15 +36,12 @@ BEGIN
-- 4. The final grayscale value is extracted from the result and converted back to a std_logic_vector. -- 4. The final grayscale value is extracted from the result and converted back to a std_logic_vector.
-- Calculate the sum of the RGB channels -- Calculate the sum of the RGB channels
rgb_sum_extended <= dividend + TO_UNSIGNED(2, BIT_DEPTH + 2); sum_extended <= dividend + TO_UNSIGNED(2, BIT_DEPTH + 2);
-- Multiply the sum by the precomputed multiplier -- Multiply the sum by the precomputed multiplier
scaled_result <= rgb_sum_extended * TO_UNSIGNED(DIVISION_MULTIPLIER, BIT_DEPTH + 1); scaled_result <= RESIZE(sum_extended * TO_UNSIGNED(DIVISION_MULTIPLIER, BIT_DEPTH + 1), RESULT_WIDTH);
-- Extract the grayscale value from the scaled result by right-shifting -- Extract the grayscale value from the scaled result by right-shifting
grayscale_value <= scaled_result(RESULT_WIDTH - 1 DOWNTO RESULT_WIDTH - BIT_DEPTH); result <= scaled_result(RESULT_WIDTH - 1 DOWNTO RESULT_WIDTH - BIT_DEPTH);
-- Assign the grayscale value to the output
gray <= grayscale_value;
END Behavioral; END Behavioral;

View File

@@ -1,41 +1,177 @@
library ieee; LIBRARY ieee;
use ieee.std_logic_1164.all; USE ieee.std_logic_1164.ALL;
use ieee.numeric_std.all; USE ieee.numeric_std.ALL;
entity img_conv is ENTITY img_conv IS
generic( GENERIC (
LOG2_N_COLS : POSITIVE := 8; LOG2_N_COLS : POSITIVE := 8;
LOG2_N_ROWS : POSITIVE := 8 LOG2_N_ROWS : POSITIVE := 8
); );
port ( PORT (
clk : in std_logic; clk : IN STD_LOGIC;
aresetn : in std_logic; aresetn : IN STD_LOGIC;
m_axis_tdata : out std_logic_vector(7 downto 0); m_axis_tdata : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axis_tvalid : out std_logic; m_axis_tvalid : OUT STD_LOGIC;
m_axis_tready : in std_logic; m_axis_tready : IN STD_LOGIC;
m_axis_tlast : out std_logic; m_axis_tlast : OUT STD_LOGIC;
conv_addr: out std_logic_vector(LOG2_N_COLS+LOG2_N_ROWS-1 downto 0); conv_addr : OUT STD_LOGIC_VECTOR(LOG2_N_COLS + LOG2_N_ROWS - 1 DOWNTO 0);
conv_data: in std_logic_vector(6 downto 0); conv_data : IN STD_LOGIC_VECTOR(6 DOWNTO 0);
start_conv: in std_logic; start_conv : IN STD_LOGIC;
done_conv: out std_logic done_conv : OUT STD_LOGIC
); );
end entity img_conv; END ENTITY img_conv;
architecture rtl of img_conv is ARCHITECTURE rtl OF img_conv IS
TYPE conv_mat_type IS ARRAY(0 TO 2, 0 TO 2) OF INTEGER;
CONSTANT conv_mat : conv_mat_type := ((-1, -1, -1),(-1, 8, -1),(-1, -1, -1));
type conv_mat_type is array(0 to 2, 0 to 2) of integer; -- Definizione della finestra 3x3; ogni pixel <20> rappresentato da 8 bit
constant conv_mat : conv_mat_type := ((-1,-1,-1),(-1,8,-1),(-1,-1,-1)); TYPE window_array IS ARRAY(0 TO 2, 0 TO 2) OF STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL window : window_array := (OTHERS => (OTHERS => (OTHERS => '0')));
-- Parametri immagine
CONSTANT IMG_WIDTH : INTEGER := 2 ** LOG2_N_COLS; -- Larghezza dell'immagine
CONSTANT IMG_HEIGHT : INTEGER := 2 ** LOG2_N_ROWS; -- Altezza dell'immagine
-- Indirizzo corrente per la lettura dei pixel
SIGNAL current_addr : STD_LOGIC_VECTOR(LOG2_N_COLS + LOG2_N_ROWS - 1 DOWNTO 0);
begin -- Variabili per il calcolo della convoluzione
SIGNAL conv_sum : INTEGER := 0; -- Somma dei prodotti
SIGNAL conv_out : STD_LOGIC_VECTOR(7 DOWNTO 0); -- Risultato della convoluzione
-- Stato della macchina a stati
TYPE state_type IS (IDLE, LOAD_PIXEL, COMPUTE, OUTPUT);
SIGNAL state : state_type := IDLE;
-- Contatori per riga e colonna
SIGNAL row, col : INTEGER RANGE 0 TO IMG_HEIGHT - 1 := 0;
end architecture; BEGIN
-- Aggiornamento dell'indirizzo di lettura (mapping riga-colonna)
conv_addr <= STD_LOGIC_VECTOR(to_unsigned(row * IMG_WIDTH + col, conv_addr'length));
-- Processo principale: macchina a stati per la gestione della convoluzione
PROCESS (clk, aresetn)
BEGIN
IF aresetn = '0' THEN
-- Reset asincrono: inizializza tutti i segnali
state <= IDLE;
row <= 0;
col <= 0;
window <= (OTHERS => (OTHERS => (OTHERS => '0')));
conv_sum <= 0;
conv_out <= (OTHERS => '0');
m_axis_tdata <= (OTHERS => '0');
m_axis_tvalid <= '0';
m_axis_tlast <= '0';
done_conv <= '0';
current_addr <= (OTHERS => '0');
ELSIF rising_edge(clk) THEN
CASE state IS
-- Stato IDLE: attende il segnale di start per iniziare la convoluzione
WHEN IDLE =>
m_axis_tvalid <= '0';
m_axis_tlast <= '0';
IF start_conv = '1' THEN
row <= 0;
col <= 0;
done_conv <= '0';
-- Inizializza la finestra a zero per gestire il padding superiore
window <= (OTHERS => (OTHERS => (OTHERS => '0')));
state <= LOAD_PIXEL;
END IF;
-- Stato LOAD_PIXEL: carica un nuovo pixel e aggiorna la finestra
WHEN LOAD_PIXEL =>
-- Aggiorna la finestra con il nuovo pixel (conv_data)
-- Lo shifting viene realizzato per spostare i dati verso sinistra
IF col = 0 THEN
-- Per ogni riga della finestra si forza la colonna sinistra a zero
FOR i IN 0 TO 2 LOOP
window(i)(0) <= (OTHERS => '0');
END LOOP;
ELSE
FOR i IN 0 TO 2 LOOP
window(i)(0) <= window(i)(1);
window(i)(1) <= window(i)(2);
END LOOP;
END IF;
-- Aggiorna la colonna destra della finestra con il nuovo pixel
FOR i IN 0 TO 2 LOOP
window(i)(2) <= conv_data;
END LOOP;
-- Aggiorna i contatori per scorrere l'immagine
IF col = IMG_WIDTH - 1 THEN
col <= 0;
IF row = IMG_HEIGHT - 1 THEN
state <= COMPUTE;
ELSE
row <= row + 1;
END IF;
ELSE
col <= col + 1;
END IF;
state <= COMPUTE;
-- Stato COMPUTE: esegue il calcolo della convoluzione
WHEN COMPUTE =>
-- Gestione dei bordi: imposta il risultato a zero se la finestra non <20> completa
IF (row = 0) OR (row = IMG_HEIGHT - 1) OR (col = 0) OR (col = IMG_WIDTH - 1) THEN
conv_sum <= 0;
ELSE
conv_sum <= 0;
-- Moltiplica cella per cella e somma i prodotti
FOR i IN 0 TO 2 LOOP
FOR j IN 0 TO 2 LOOP
conv_sum <= conv_sum + conv_mat(i, j) * to_integer(unsigned(window(i)(j)));
END LOOP;
END LOOP;
END IF;
-- Saturazione del risultato
IF conv_sum < 0 THEN
conv_out <= STD_LOGIC_VECTOR(to_unsigned(0, 8));
ELSIF conv_sum >= 256 THEN
conv_out <= STD_LOGIC_VECTOR(to_unsigned(255, 8));
ELSE
conv_out <= STD_LOGIC_VECTOR(to_unsigned(conv_sum, 8));
END IF;
state <= OUTPUT;
-- Stato OUTPUT: invia il risultato tramite l'interfaccia AXIS
WHEN OUTPUT =>
IF m_axis_tready = '1' THEN
m_axis_tdata <= conv_out;
m_axis_tvalid <= '1';
-- Se siamo sull'ultimo pixel dell'immagine, segnaliamo TLAST e il completamento
IF (row = IMG_HEIGHT - 1) AND (col = IMG_WIDTH - 1) THEN
m_axis_tlast <= '1';
done_conv <= '1';
state <= IDLE;
ELSE
m_axis_tlast <= '0';
state <= LOAD_PIXEL;
END IF;
END IF;
-- Stato di default: ritorna a IDLE
WHEN OTHERS =>
state <= IDLE;
END CASE;
END IF;
END PROCESS;
END ARCHITECTURE;

View File

@@ -30,29 +30,30 @@ ARCHITECTURE Behavioral OF rgb2gray IS
COMPONENT divider_by_3 COMPONENT divider_by_3
GENERIC ( GENERIC (
BIT_DEPTH : INTEGER := 8 BIT_DEPTH : INTEGER := 7
); );
PORT ( PORT (
dividend : IN UNSIGNED(BIT_DEPTH + 1 DOWNTO 0); dividend : IN UNSIGNED(BIT_DEPTH + 1 DOWNTO 0);
gray : OUT UNSIGNED(BIT_DEPTH - 1 DOWNTO 0)); result : OUT UNSIGNED(BIT_DEPTH - 1 DOWNTO 0));
END COMPONENT divider_by_3; END COMPONENT divider_by_3;
TYPE state_type IS (WAIT_R, WAIT_G, WAIT_B); TYPE state_type IS (WAIT_R, WAIT_G, WAIT_B);
SIGNAL state : state_type := WAIT_R; SIGNAL state : state_type := WAIT_R;
SIGNAL r_val, g_val : unsigned(7 DOWNTO 0); SIGNAL r_val, g_val : unsigned(7 DOWNTO 0);
SIGNAL sum : unsigned(9 DOWNTO 0); SIGNAL sum : unsigned(8 DOWNTO 0);
SIGNAL gray : UNSIGNED(7 DOWNTO 0); SIGNAL gray : UNSIGNED(6 DOWNTO 0);
SIGNAL send_data : STD_LOGIC := '0';
BEGIN BEGIN
DIVIDER : divider_by_3 DIVIDER : divider_by_3
GENERIC MAP( GENERIC MAP(
BIT_DEPTH => 8 BIT_DEPTH => 7
) )
PORT MAP( PORT MAP(
dividend => sum, dividend => sum,
gray => gray result => gray
); );
PROCESS (clk) PROCESS (clk)
@@ -70,32 +71,43 @@ BEGIN
sum <= (OTHERS => '0'); sum <= (OTHERS => '0');
ELSE ELSE
-- Default control signals -- Default control signals
s_axis_tready <= '1'; m_axis_tlast <= s_axis_tlast;
m_axis_tlast <= '0'; m_axis_tvalid <= '0';
-- If downstream is ready, send the grayscale pixel -- If downstream is ready, send the grayscale pixel
IF m_axis_tready = '1' THEN IF m_axis_tready = '1' AND send_data = '1' THEN
m_axis_tdata <= STD_LOGIC_VECTOR(gray); m_axis_tdata <= STD_LOGIC_VECTOR('0' & gray);
m_axis_tlast <= s_axis_tlast; m_axis_tvalid <= '1';
send_data <= '0';
END IF; END IF;
CASE state IS CASE state IS
WHEN WAIT_R => WHEN WAIT_R =>
IF s_axis_tvalid = '1' THEN IF s_axis_tvalid = '1' THEN
r_val <= unsigned(s_axis_tdata); r_val <= unsigned(s_axis_tdata);
IF m_axis_tready = '0' THEN
s_axis_tready <= '0';
END IF;
state <= WAIT_G; state <= WAIT_G;
END IF; END IF;
WHEN WAIT_G => WHEN WAIT_G =>
IF s_axis_tvalid = '1' THEN IF s_axis_tvalid = '1' THEN
g_val <= unsigned(s_axis_tdata); g_val <= unsigned(s_axis_tdata);
IF m_axis_tready = '1' THEN
s_axis_tready <= '1';
state <= WAIT_B; state <= WAIT_B;
END IF; END IF;
END IF;
WHEN WAIT_B => WHEN WAIT_B =>
IF s_axis_tvalid = '1' THEN IF s_axis_tvalid = '1' THEN
sum <= ('0' & '0' & r_val) + ('0' & '0' & g_val) + ('0' & '0' & unsigned(s_axis_tdata)); sum <= RESIZE(r_val + g_val + unsigned(s_axis_tdata), 9);
m_axis_tvalid <= '1'; send_data <= '1';
state <= WAIT_R; state <= WAIT_R;
END IF; END IF;

View File

@@ -47,7 +47,7 @@
<Option Name="IPStaticSourceDir" Val="$PIPUSERFILESDIR/ipstatic"/> <Option Name="IPStaticSourceDir" Val="$PIPUSERFILESDIR/ipstatic"/>
<Option Name="EnableBDX" Val="FALSE"/> <Option Name="EnableBDX" Val="FALSE"/>
<Option Name="DSABoardId" Val="basys3"/> <Option Name="DSABoardId" Val="basys3"/>
<Option Name="WTXSimLaunchSim" Val="50"/> <Option Name="WTXSimLaunchSim" Val="84"/>
<Option Name="WTModelSimLaunchSim" Val="0"/> <Option Name="WTModelSimLaunchSim" Val="0"/>
<Option Name="WTQuestaLaunchSim" Val="0"/> <Option Name="WTQuestaLaunchSim" Val="0"/>
<Option Name="WTIesLaunchSim" Val="0"/> <Option Name="WTIesLaunchSim" Val="0"/>