refactor: Enhance comments and code clarity in led_level_controller.vhd
This commit is contained in:
@@ -6,39 +6,36 @@ USE IEEE.MATH_REAL.ALL;
|
|||||||
-- Entity: led_level_controller
|
-- Entity: led_level_controller
|
||||||
-- Purpose: Audio level meter using LEDs to display real-time audio amplitude
|
-- Purpose: Audio level meter using LEDs to display real-time audio amplitude
|
||||||
-- Processes stereo audio samples and drives a bar graph LED display
|
-- Processes stereo audio samples and drives a bar graph LED display
|
||||||
-- Provides visual feedback of audio signal strength for both channels combined
|
|
||||||
ENTITY led_level_controller IS
|
ENTITY led_level_controller IS
|
||||||
GENERIC (
|
GENERIC (
|
||||||
NUM_LEDS : POSITIVE := 16; -- Number of LEDs in the level meter display
|
NUM_LEDS : POSITIVE := 16; -- Number of LEDs in the level meter display
|
||||||
CHANNEL_LENGHT : POSITIVE := 24; -- Width of audio data (24-bit audio samples)
|
CHANNEL_LENGHT : POSITIVE := 24; -- Width of audio data (24-bit audio samples)
|
||||||
refresh_time_ms : POSITIVE := 1; -- LED refresh rate in milliseconds (1ms = 1kHz update rate)
|
refresh_time_ms : POSITIVE := 1; -- LED refresh rate in milliseconds (1ms = 1kHz update rate)
|
||||||
clock_period_ns : POSITIVE := 10 -- System clock period in nanoseconds (10ns = 100MHz)
|
clock_period_ns : POSITIVE := 10 -- System clock period in nanoseconds (10ns = 100MHz)
|
||||||
);
|
);
|
||||||
PORT (
|
PORT (
|
||||||
-- Clock and reset signals
|
-- Clock and reset signals
|
||||||
aclk : IN STD_LOGIC; -- Main clock input
|
aclk : IN STD_LOGIC; -- Main clock input
|
||||||
aresetn : IN STD_LOGIC; -- Active-low asynchronous reset
|
aresetn : IN STD_LOGIC; -- Active-low asynchronous reset
|
||||||
|
|
||||||
-- LED output array (bar graph display)
|
-- LED output array (bar graph display)
|
||||||
led : OUT STD_LOGIC_VECTOR(NUM_LEDS - 1 DOWNTO 0); -- LED control signals (1=on, 0=off)
|
led : OUT STD_LOGIC_VECTOR(NUM_LEDS - 1 DOWNTO 0); -- LED control signals (1=on, 0=off)
|
||||||
|
|
||||||
-- AXI4-Stream Slave Interface (Audio Input)
|
-- AXI4-Stream Slave Interface (Audio Input)
|
||||||
s_axis_tvalid : IN STD_LOGIC; -- Input data valid signal
|
s_axis_tvalid : IN STD_LOGIC; -- Input data valid signal
|
||||||
s_axis_tdata : IN STD_LOGIC_VECTOR(CHANNEL_LENGHT - 1 DOWNTO 0); -- Audio sample input
|
s_axis_tdata : IN STD_LOGIC_VECTOR(CHANNEL_LENGHT - 1 DOWNTO 0); -- Audio sample input
|
||||||
s_axis_tlast : IN STD_LOGIC; -- Channel indicator (0=right, 1=left)
|
s_axis_tlast : IN STD_LOGIC; -- Channel indicator (0=right, 1=left)
|
||||||
s_axis_tready : OUT STD_LOGIC -- Always ready to accept data
|
s_axis_tready : OUT STD_LOGIC -- Always ready to accept data
|
||||||
);
|
);
|
||||||
END led_level_controller;
|
END led_level_controller;
|
||||||
|
|
||||||
ARCHITECTURE Behavioral OF led_level_controller IS
|
ARCHITECTURE Behavioral OF led_level_controller IS
|
||||||
|
|
||||||
-- Calculate clock cycles needed for LED refresh timing
|
-- Calculate clock cycles needed for LED refresh timing
|
||||||
-- Formula: (refresh_time_ms * 1_000_000 ns/ms) / clock_period_ns
|
|
||||||
-- Example: (1ms * 1,000,000) / 10ns = 100,000 cycles for 1ms refresh at 100MHz
|
|
||||||
CONSTANT REFRESH_CYCLES : INTEGER := (refresh_time_ms * 1_000_000) / clock_period_ns - 1;
|
CONSTANT REFRESH_CYCLES : INTEGER := (refresh_time_ms * 1_000_000) / clock_period_ns - 1;
|
||||||
|
|
||||||
-- Calculate the number of bits needed to represent the number of LEDs
|
-- Calculate the number of bits needed to represent the number of LEDs
|
||||||
CONSTANT NUMLEDS_BITS : INTEGER := INTEGER(ceil(log2(real(NUM_LEDS))));
|
CONSTANT NUMLEDS_BITS : INTEGER := INTEGER(ceil(log2(real(NUM_LEDS))));
|
||||||
|
|
||||||
-- LED refresh timing control signals
|
-- LED refresh timing control signals
|
||||||
SIGNAL refresh_counter : INTEGER RANGE 0 TO REFRESH_CYCLES := 0; -- Counts clock cycles between LED updates
|
SIGNAL refresh_counter : INTEGER RANGE 0 TO REFRESH_CYCLES := 0; -- Counts clock cycles between LED updates
|
||||||
@@ -50,17 +47,18 @@ ARCHITECTURE Behavioral OF led_level_controller IS
|
|||||||
|
|
||||||
BEGIN
|
BEGIN
|
||||||
|
|
||||||
-- AXI4-Stream interface: Always ready to receive audio data
|
-- Always ready for AXI4-Stream input
|
||||||
-- This ensures continuous audio processing without backpressure
|
|
||||||
s_axis_tready <= '1';
|
s_axis_tready <= '1';
|
||||||
|
|
||||||
-- Audio sample acquisition process based on channel identification
|
-- Capture absolute value of input sample for left/right channel
|
||||||
-- Processes incoming stereo audio samples and converts to absolute amplitude values
|
|
||||||
-- Uses s_axis_tlast to distinguish between left (1) and right (0) channels
|
|
||||||
PROCESS (aclk)
|
PROCESS (aclk)
|
||||||
VARIABLE signed_sample : SIGNED(CHANNEL_LENGHT - 1 DOWNTO 0); -- Temporary variable for signed arithmetic
|
|
||||||
|
VARIABLE signed_sample : SIGNED(CHANNEL_LENGHT - 1 DOWNTO 0);
|
||||||
|
|
||||||
BEGIN
|
BEGIN
|
||||||
|
|
||||||
IF rising_edge(aclk) THEN
|
IF rising_edge(aclk) THEN
|
||||||
|
|
||||||
IF aresetn = '0' THEN
|
IF aresetn = '0' THEN
|
||||||
-- Reset: Clear both channel amplitude registers
|
-- Reset: Clear both channel amplitude registers
|
||||||
abs_l <= (OTHERS => '0');
|
abs_l <= (OTHERS => '0');
|
||||||
@@ -79,64 +77,72 @@ BEGIN
|
|||||||
-- Right channel: Store absolute value of audio sample
|
-- Right channel: Store absolute value of audio sample
|
||||||
abs_r <= UNSIGNED(ABS(signed_sample));
|
abs_r <= UNSIGNED(ABS(signed_sample));
|
||||||
END IF;
|
END IF;
|
||||||
|
|
||||||
END IF;
|
END IF;
|
||||||
|
|
||||||
END IF;
|
END IF;
|
||||||
|
|
||||||
END PROCESS;
|
END PROCESS;
|
||||||
|
|
||||||
-- LED refresh timing generator process
|
-- LED refresh tick generator
|
||||||
-- Creates a periodic tick signal to control LED update rate
|
|
||||||
-- Prevents LED flickering by limiting update frequency to human-visible rates
|
|
||||||
PROCESS (aclk)
|
PROCESS (aclk)
|
||||||
BEGIN
|
BEGIN
|
||||||
|
|
||||||
IF rising_edge(aclk) THEN
|
IF rising_edge(aclk) THEN
|
||||||
|
|
||||||
IF aresetn = '0' THEN
|
IF aresetn = '0' THEN
|
||||||
-- Reset: Initialize counter and tick signal
|
-- Reset: Initialize counter and tick signal
|
||||||
refresh_counter <= 0;
|
refresh_counter <= 0;
|
||||||
refresh_tick <= '0';
|
refresh_tick <= '0';
|
||||||
|
|
||||||
ELSE
|
ELSE
|
||||||
-- Normal operation: Count clock cycles and generate refresh tick
|
|
||||||
IF refresh_counter = REFRESH_CYCLES THEN
|
IF refresh_counter = REFRESH_CYCLES THEN
|
||||||
-- End of refresh period: Reset counter and generate tick pulse
|
|
||||||
refresh_counter <= 0;
|
refresh_counter <= 0;
|
||||||
refresh_tick <= '1'; -- Single clock cycle pulse for LED update
|
refresh_tick <= '1';
|
||||||
|
|
||||||
ELSE
|
ELSE
|
||||||
-- Continue counting: Increment counter, no tick
|
|
||||||
refresh_counter <= refresh_counter + 1;
|
refresh_counter <= refresh_counter + 1;
|
||||||
refresh_tick <= '0';
|
refresh_tick <= '0';
|
||||||
|
|
||||||
END IF;
|
END IF;
|
||||||
|
|
||||||
END IF;
|
END IF;
|
||||||
|
|
||||||
END IF;
|
END IF;
|
||||||
|
|
||||||
END PROCESS;
|
END PROCESS;
|
||||||
|
|
||||||
-- LED level calculation and bar graph generation process
|
-- LED level calculation and bar graph generation process
|
||||||
-- Combines left and right channel amplitudes and converts to LED display pattern
|
-- Combines left and right channel amplitudes and converts to LED display pattern
|
||||||
-- Updates only when refresh_tick is active to maintain stable visual display
|
-- Updates only when refresh_tick is active to maintain stable visual display
|
||||||
PROCESS (aclk)
|
PROCESS (aclk)
|
||||||
VARIABLE combined_amp : UNSIGNED(CHANNEL_LENGHT - 1 DOWNTO 0); -- Combined amplitude of both channels
|
|
||||||
VARIABLE led_level : INTEGER RANGE 0 TO 2**NUMLEDS_BITS := 0; -- Calculated LED level for bar graph display
|
VARIABLE combined_amp : UNSIGNED(CHANNEL_LENGHT - 1 DOWNTO 0);
|
||||||
|
VARIABLE led_level : INTEGER RANGE 0 TO 2 ** NUMLEDS_BITS := 0;
|
||||||
|
|
||||||
BEGIN
|
BEGIN
|
||||||
|
|
||||||
IF rising_edge(aclk) THEN
|
IF rising_edge(aclk) THEN
|
||||||
|
|
||||||
IF aresetn = '0' THEN
|
IF aresetn = '0' THEN
|
||||||
-- Reset: Turn off all LEDs and reset level counter
|
-- Reset: Turn off all LEDs and reset level counter
|
||||||
led <= (OTHERS => '0');
|
led <= (OTHERS => '0');
|
||||||
|
|
||||||
ELSIF refresh_tick = '1' THEN
|
ELSIF refresh_tick = '1' THEN
|
||||||
-- LED update cycle: Calculate new LED pattern based on audio amplitude
|
-- LED update cycle: Calculate new LED pattern based on audio amplitude
|
||||||
-- This section is executed once per refresh_tick to avoid flicker and ensure a stable display.
|
|
||||||
|
|
||||||
-- Combine left and right channel amplitudes
|
-- Combine left and right channel amplitudes
|
||||||
-- The sum of the absolute values of both channels gives a measure of total audio energy.
|
|
||||||
-- RESIZE ensures the sum fits within the variable's bit width.
|
-- RESIZE ensures the sum fits within the variable's bit width.
|
||||||
-- There isn't data loss here since both abs_l and abs_r are one bit shorter than combined_amp,
|
-- There isn't data loss since both abs_l and abs_r are one bit shorter than combined_amp,
|
||||||
-- due to the absolute value operation.
|
-- due to the absolute value operation.
|
||||||
combined_amp := RESIZE(abs_l + abs_r, combined_amp'LENGTH);
|
combined_amp := RESIZE(abs_l + abs_r, combined_amp'LENGTH);
|
||||||
|
|
||||||
-- Normalize combined amplitude to LED scale (0 to NUM_LEDS)
|
-- Linear scale to LED level conversion to get the best visual effect
|
||||||
-- The combined amplitude is mapped to the number of LEDs using a right shift.
|
IF combined_amp = 0 THEN
|
||||||
-- For 24-bit audio, shifting by (CHANNEL_LENGHT - 4) reduces the range to approximately 4 bits (0-15).
|
led_level := 0; -- No audio signal, turn off all LEDs
|
||||||
-- Adding 1 ensures that at least one LED lights up for any non-zero audio input.
|
ELSE
|
||||||
-- Example: For 24-bit input, 1 + (combined_amp >> 20) gives a range from 1 to 16.
|
led_level := 1 + to_integer(shift_right(combined_amp, CHANNEL_LENGHT - NUMLEDS_BITS));
|
||||||
led_level := 1 + to_integer(shift_right(combined_amp, CHANNEL_LENGHT - NUMLEDS_BITS));
|
END IF;
|
||||||
|
|
||||||
-- Saturation protection: Limit LED level to maximum available LEDs
|
-- Saturation protection: Limit LED level to maximum available LEDs
|
||||||
-- Prevents overflow and ensures the LED index stays within bounds.
|
-- Prevents overflow and ensures the LED index stays within bounds.
|
||||||
@@ -144,16 +150,16 @@ BEGIN
|
|||||||
led_level := NUM_LEDS;
|
led_level := NUM_LEDS;
|
||||||
END IF;
|
END IF;
|
||||||
|
|
||||||
-- Generate bar graph LED pattern
|
-- Update LED output based on calculated level
|
||||||
-- Implements a "thermometer" style display: all LEDs from 0 up to (led_level-1) are ON.
|
|
||||||
-- All higher LEDs remain OFF.
|
|
||||||
-- The assignment first turns all LEDs OFF, then sets the lower 'led_level' LEDs ON.
|
|
||||||
led <= (OTHERS => '0');
|
led <= (OTHERS => '0');
|
||||||
IF led_level > 0 THEN
|
IF led_level > 0 THEN
|
||||||
led(led_level - 1 DOWNTO 0) <= (OTHERS => '1');
|
led(led_level - 1 DOWNTO 0) <= (OTHERS => '1');
|
||||||
END IF;
|
END IF;
|
||||||
|
|
||||||
END IF;
|
END IF;
|
||||||
|
|
||||||
END IF;
|
END IF;
|
||||||
|
|
||||||
END PROCESS;
|
END PROCESS;
|
||||||
|
|
||||||
END Behavioral;
|
END Behavioral;
|
||||||
Reference in New Issue
Block a user