Files
DESD/LAB2/test/test.py
Davide 835b4d0ab8 Refactor and update various components in LAB2 design
- Updated node connections in lab_2.bda and pak_depak.bda to correct source and target references.
- Modified pak_depak_wrapper.vhd to reflect the correct timestamp.
- Rearranged the order of components in pak_depak.bd for clarity and consistency.
- Adjusted BRAM writer logic in bram_writer.vhd for improved data handling and comments for clarity.
- Enhanced depacketizer.vhd with additional comments and logic adjustments for better data reception.
- Refined divider_by_3.vhd to optimize division calculations and improve clarity in comments.
- Improved img_conv.vhd with better state management and comments for the convolution process.
- Updated led_blinker.vhd to enhance readability and maintainability with clearer comments.
- Enhanced packetizer.vhd to improve data handling and added comments for better understanding.
- Adjusted rgb2gray.vhd to include standard library comments for consistency.
- Updated test.py to improve image processing logic and added visualization for differences.
- Added new binary files for test_nopath.exe and archived project files for lab2 and pak_depak.
- Updated Vivado project files to ensure correct paths and settings for synthesis and implementation.
2025-04-25 00:43:10 +02:00

165 lines
4.9 KiB
Python

import sys
import subprocess
def install_and_import(package, package_name=None):
if package_name is None:
package_name = package
import importlib
try:
importlib.import_module(package)
except ImportError:
subprocess.check_call([sys.executable, "-m", "pip", "install", package_name])
finally:
globals()[package] = importlib.import_module(package)
install_and_import("serial", "pyserial")
install_and_import("PIL", "pillow")
install_and_import("tqdm")
install_and_import("numpy")
install_and_import("scipy")
from serial import Serial
import serial.tools.list_ports
from tqdm import tqdm
from PIL import Image
from scipy.signal import convolve2d
import numpy as np
IMAGE_OF = r'C:\DESD\LAB2\test\test_of.png'
IMAGE_UF = r'C:\DESD\LAB2\test\test_uf.png'
IMAGE_NAME3 = r'C:\DESD\LAB2\test\test3.png'
IMAGE_NAME2 = r'C:\DESD\LAB2\test\test2.png'
IMAGE_NAME1 = r'C:\DESD\LAB2\test\test1.png'
IMAGE_DEPACK_PACK = r'C:\DESD\LAB2\test\test_depack_pack.png'
BASYS3_PID = 0x6010
BASYS3_VID = 0x0403
IMG_HEIGHT = 256
IMG_WIDTH = 256
dev = ""
for port in serial.tools.list_ports.comports():
if (port.vid == BASYS3_VID and port.pid == BASYS3_PID):
dev = port.device
if not dev:
raise RuntimeError("Basys 3 Not Found!")
test_n = int(input("Insert test number (1, 2, 3, 4 (overflow), 5 (underflow) or 6 (depack > pack only)): ").strip())
if test_n not in [1, 2, 3, 4, 5, 6]:
raise RuntimeError("Test number must be 1, 2, 3, 4 (overflow), 5 (underflow) or 6 (depack > pack only)")
dev = Serial(dev, 115200)
img = Image.open(IMAGE_NAME1 if test_n == 1 else IMAGE_NAME2 if test_n == 2 else IMAGE_NAME3 if test_n == 3 else IMAGE_OF if test_n == 4 else IMAGE_UF if test_n == 5 else IMAGE_DEPACK_PACK)
if img.mode != "RGB":
img = img.convert("RGB")
if test_n == 4:
print("Check for overflow (LED U16)")
elif test_n == 5:
print("Check for underflow (LED U19)")
IMG_WIDTH, IMG_HEIGHT = img.size # Get dimensions from the image
mat = np.asarray(img, dtype=np.uint8)
mat = mat[:, :, :3]
if mat.max() > 127:
mat = mat // 2
res = b''
if test_n == 6:
print("Check for depack > pack")
total_bytes = IMG_HEIGHT * IMG_WIDTH * 3
for idx in tqdm(range(total_bytes)):
i = idx // (IMG_WIDTH * 3)
j = (idx // 3) % IMG_WIDTH
k = idx % 3
dev.write(b'\xff')
dev.write(bytes([mat[i, j, k]]))
dev.write(b'\xf1')
dev.flush()
# Read 3 bytes: header, data, footer
resp = dev.read(3)
res += resp[1:2] # Only keep the data byte
res_img = np.frombuffer(res, dtype=np.uint8)
res_img = res_img.reshape((IMG_HEIGHT, IMG_WIDTH, 3))
else:
buff = mat.tobytes()
mat_gray = np.round(np.sum(mat, axis=2) / 3).astype(np.uint8)
sim_img = convolve2d(mat_gray, [[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]], mode="same")
sim_img[sim_img < 0] = 0
sim_img[sim_img > 127] = 127
sim_img = sim_img.astype(np.uint8)
dev.write(b'\xff')
for i in tqdm(range(IMG_HEIGHT)):
dev.write(buff[i * IMG_WIDTH * 3:(i + 1) * IMG_WIDTH * 3])
dev.write(b'\xf1')
dev.flush()
if test_n == 4 or test_n == 5:
exit()
else:
res = dev.read(IMG_HEIGHT * IMG_WIDTH + 2)
res_img = np.frombuffer(res[1:-1], dtype=np.uint8)
res_img = res_img.reshape((IMG_HEIGHT, IMG_WIDTH))
if (test_n == 6 and (res_img == mat).all()) or (res_img == sim_img).all():
print("Image Match!")
im = Image.fromarray(res_img)
im.show()
else:
print("Image Mismatch!")
# Only for BW images and not for test_n == 6
if test_n != 6:
# Compute absolute difference
diff = np.abs(res_img.astype(np.int16) - sim_img.astype(np.int16))
# Normalize difference to 0-255 for visualization
if diff.max() > 0:
diff_norm = (diff * 255 // diff.max()).astype(np.uint8)
else:
diff_norm = diff.astype(np.uint8)
# Create a binary mask: white where difference is not zero
mask = (diff != 0) * 255
mask = mask.astype(np.uint8)
# Prepare images for side-by-side visualization
im_res = Image.fromarray(res_img)
im_diff = Image.fromarray(diff_norm)
im_sim = Image.fromarray(sim_img)
# Convert all to RGB for concatenation
im_res_rgb = im_res.convert("RGB")
im_diff_rgb = im_diff.convert("RGB")
im_sim_rgb = im_sim.convert("RGB")
# Concatenate images horizontally
total_width = im_res_rgb.width + im_diff_rgb.width + im_sim_rgb.width
max_height = max(im_res_rgb.height, im_diff_rgb.height, im_sim_rgb.height)
combined = Image.new("RGB", (total_width, max_height))
combined.paste(im_res_rgb, (0, 0))
combined.paste(im_diff_rgb, (im_res_rgb.width, 0))
combined.paste(im_sim_rgb, (im_res_rgb.width + im_diff_rgb.width, 0))
combined.show(title="Result | Diff | Reference")